Datasets:

Modalities:
Text
Languages:
code
ArXiv:
Libraries:
Datasets
License:
commit
stringclasses
1 value
old_file
stringclasses
1 value
new_file
stringclasses
1 value
old_contents
stringclasses
1 value
new_contents
stringclasses
1 value
subject
stringclasses
1 value
message
stringclasses
1 value
lang
stringclasses
1 value
license
stringclasses
1 value
repos
stringclasses
1 value
e466f86a763f89a26274cf01cb6bbe79b251c50c
ZUSR_LISP_REPL.abap
ZUSR_LISP_REPL.abap
*&---------------------------------------------------------------------* *& Report ZUSR_LISP_REPL *& https://github.com/mydoghasworms/abap-lisp *& Simple REPL for Lisp Interpreter written in ABAP *& Martin Ceronio, June 2015 *& [email protected] *&---------------------------------------------------------------------* report zusr_lisp_repl line-size 999. include zlib_lisp. data: lr_int type ref to lcl_lisp_interpreter. "The Lisp interpreter parameters: input type string lower case. parameters: output type string lower case. at selection-screen output. * Make result field output-only loop at screen. if screen-name = 'OUTPUT'. screen-input = 0. modify screen. endif. endloop. at selection-screen. * Initialize interpreter if not done yet if lr_int is not bound. create object lr_int. endif. * Evaluate given code output = lr_int->eval_source( input ). clear input. load-of-program. * Hitting execute gets us back to this event and initializes the interpreter, * so we preferably want to avoid that happening inadvertently: perform insert_into_excl(rsdbrunt) using: 'ONLI', 'SPOS', 'PRIN', 'SJOB'.
*&---------------------------------------------------------------------* *& Report ZUSR_LISP_REPL *& https://github.com/mydoghasworms/abap-lisp *& Simple REPL for Lisp Interpreter written in ABAP *& Martin Ceronio, June 2015 *& [email protected] *&---------------------------------------------------------------------* report zusr_lisp_repl line-size 999. include zlib_lisp. data: lr_int type ref to lcl_lisp_interpreter. "The Lisp interpreter data: rt_begin type i. data: rt_end type i. parameters: input type string lower case. parameters: output type string lower case. parameters: runtime type string lower case. at selection-screen output. * Make result field output-only loop at screen. if screen-name = 'OUTPUT' or screen-name = 'RUNTIME'. screen-input = 0. if screen-name = 'RUNTIME'. screen-display_3d = 0. endif. modify screen. endif. endloop. at selection-screen. * Initialize interpreter if not done yet if lr_int is not bound. create object lr_int. endif. * Evaluate given code get RUN TIME FIELD rt_begin. output = lr_int->eval_source( input ). get RUN TIME FIELD rt_end. clear input. runtime = |{ rt_end - rt_begin } microseconds|. load-of-program. * Hitting execute gets us back to this event and initializes the interpreter, * so we preferably want to avoid that happening inadvertently: perform insert_into_excl(rsdbrunt) using: 'ONLI', 'SPOS', 'PRIN', 'SJOB'.
Add runtime measurement to REPL
Add runtime measurement to REPL
ABAP
mit
mydoghasworms/abap-lisp,mydoghasworms/abap-lisp,mydoghasworms/abap-lisp

Octopack

Dataset Card for CommitPackFT

Dataset Summary

CommitPackFT is a 2GB filtered version of CommitPack to contain only high-quality commit messages that resemble natural language instructions.

  • Creation: The dataset can be recreated using instructions available here.
  • Languages: 277
  • OctoPack🐙🎒:
Data CommitPack 4TB of GitHub commits across 350 programming languages
CommitPackFT Filtered version of CommitPack for high-quality commit messages that resemble instructions
Model OctoCoder StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST
OctoGeeX CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST
Evaluation   HumanEvalPack Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages

Dataset Structure

Data Instances

An example looks as follows:

{
  'commit': '0c17311f7fd511f5dae8f8e4acc2dce1a2de3cf5',
  'old_file': 'main.py',
  'new_file': 'main.py',
  'old_contents': "import numpy as np\nimport matplotlib.pyplot as plt\n\n# generate sample data\nx_data = np.linspace(-5, 5, 20)\ny_data = np.random.normal(0.0, 1.0, x_data.size)\n\nplt.plot(x_data, y_data, 'o')\nplt.show()\n",
  'new_contents': "import math\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# generate sample data\nx_data = np.linspace(-math.pi, math.pi, 30)\ny_data = np.sin(x_data) + np.random.normal(0.0, 0.1, x_data.size)\n\nplt.plot(x_data, y_data, 'o')\nplt.show()\n\n",
  'subject': 'Change to sin() function with noise',
  'message': 'Change to sin() function with noise\n',
  'lang': 'Python',
  'license': 'mit',
  'repos': 'MorganR/basic-gaussian-process'
}

Data Fields

The data fields are the same among all splits:

  • commit: unique commit id
  • old_file: name of the file before the commit
  • new_file: name of the file after the commit
  • old_contents: contents of the file before the commit
  • new_contents: contents of the file after the commit
  • subject: subject of the commit (this is used for all experiments in the paper)
  • message: message of the commit (commonly the same as the subject)
  • lang: programming language
  • license: license of the repository the code stems from, one of ['mit', 'artistic-2.0', 'isc', 'cc0-1.0', 'epl-1.0', 'mpl-2.0', 'unlicense', 'unknown', 'apache-2.0', 'bsd-3-clause', 'agpl-3.0', 'lgpl-2.1', 'bsd-2-clause']
  • repos: name of the the repository the code stems from (if multiple, they are comma separated)

Data Splits

Name Megabytes % of total Samples % of total
total 1545.02 100.0% 702062 100.0%
ruby 195.292 12.6401% 69413 9.887%
yaml 190.876 12.3543% 114320 16.2835%
python 132.68 8.5876% 56025 7.9801%
markdown 131.152 8.4887% 62518 8.9049%
javascript 125.008 8.091% 52989 7.5476%
json 86.744 5.6144% 39777 5.6657%
shell 66.864 4.3277% 31217 4.4465%
text 66.664 4.3148% 46588 6.6359%
php 60.22 3.8977% 24791 3.5312%
java 56.284 3.6429% 20635 2.9392%
html 48.42 3.1339% 20214 2.8792%
c# 26.84 1.7372% 9346 1.3312%
xml 23.676 1.5324% 9337 1.3299%
html+erb 23.104 1.4954% 10910 1.554%
c 21.08 1.3644% 8506 1.2116%
ini 21.04 1.3618% 11360 1.6181%
coffeescript 16.96 1.0977% 5513 0.7853%
swift 16.272 1.0532% 4849 0.6907%
restructuredtext 15.728 1.018% 6560 0.9344%
typescript 14.284 0.9245% 5868 0.8358%
c++ 14.136 0.9149% 4992 0.711%
scss 13.208 0.8549% 6829 0.9727%
go 12.132 0.7852% 5004 0.7128%
scala 11.184 0.7239% 5040 0.7179%
haml 10.74 0.6951% 4415 0.6289%
css 9.364 0.6061% 5049 0.7192%
rust 7.244 0.4689% 2996 0.4267%
toml 5.584 0.3614% 3424 0.4877%
jsx 5.5 0.356% 2199 0.3132%
kotlin 5.368 0.3474% 2214 0.3154%
clojure 5.068 0.328% 2403 0.3423%
perl 4.988 0.3228% 2288 0.3259%
bitbake 4.464 0.2889% 1308 0.1863%
groovy 4.168 0.2698% 1486 0.2117%
twig 3.956 0.256% 1610 0.2293%
nix 3.84 0.2485% 1593 0.2269%
sql 3.74 0.2421% 2069 0.2947%
less 3.724 0.241% 1360 0.1937%
haskell 3.308 0.2141% 1389 0.1978%
handlebars 3.292 0.2131% 1429 0.2035%
unknown 3.048 0.1973% 1597 0.2275%
batchfile 2.984 0.1931% 1466 0.2088%
cucumber 2.588 0.1675% 976 0.139%
makefile 2.528 0.1636% 960 0.1367%
elixir 2.348 0.152% 1150 0.1638%
jade 2.348 0.152% 1119 0.1594%
cmake 2.268 0.1468% 981 0.1397%
powershell 2.064 0.1336% 991 0.1412%
slim 2.056 0.1331% 1052 0.1498%
emacs-lisp 1.972 0.1276% 1015 0.1446%
dart 1.96 0.1269% 765 0.109%
viml 1.956 0.1266% 1063 0.1514%
asciidoc 1.864 0.1206% 523 0.0745%
lua 1.852 0.1199% 920 0.131%
llvm 1.6 0.1036% 780 0.1111%
smarty 1.588 0.1028% 737 0.105%
diff 1.48 0.0958% 680 0.0969%
common-lisp 1.448 0.0937% 778 0.1108%
saltstack 1.412 0.0914% 617 0.0879%
vue 1.384 0.0896% 587 0.0836%
sass 1.364 0.0883% 705 0.1004%
fish 1.328 0.086% 813 0.1158%
erlang 1.192 0.0772% 480 0.0684%
freemarker 1.028 0.0665% 510 0.0726%
stylus 0.948 0.0614% 480 0.0684%
qml 0.936 0.0606% 368 0.0524%
hcl 0.912 0.059% 421 0.06%
html+django 0.848 0.0549% 399 0.0568%
mako 0.756 0.0489% 170 0.0242%
ada 0.728 0.0471% 265 0.0377%
ocaml 0.704 0.0456% 333 0.0474%
f# 0.656 0.0425% 254 0.0362%
elm 0.62 0.0401% 265 0.0377%
tex 0.564 0.0365% 307 0.0437%
rdoc 0.552 0.0357% 270 0.0385%
csv 0.532 0.0344% 375 0.0534%
protocol-buffer 0.524 0.0339% 181 0.0258%
smalltalk 0.46 0.0298% 284 0.0405%
arduino 0.456 0.0295% 225 0.032%
java-server-pages 0.452 0.0293% 173 0.0246%
scheme 0.42 0.0272% 213 0.0303%
groff 0.396 0.0256% 192 0.0273%
objective-c++ 0.376 0.0243% 86 0.0122%
desktop 0.364 0.0236% 186 0.0265%
factor 0.356 0.023% 113 0.0161%
crystal 0.348 0.0225% 182 0.0259%
rhtml 0.348 0.0225% 135 0.0192%
haxe 0.344 0.0223% 174 0.0248%
glsl 0.34 0.022% 164 0.0234%
gas 0.336 0.0217% 193 0.0275%
html+php 0.332 0.0215% 150 0.0214%
qmake 0.32 0.0207% 140 0.0199%
julia 0.312 0.0202% 180 0.0256%
cython 0.308 0.0199% 123 0.0175%
html+eex 0.292 0.0189% 135 0.0192%
tcl 0.292 0.0189% 103 0.0147%
org 0.272 0.0176% 136 0.0194%
perl6 0.268 0.0173% 122 0.0174%
m4 0.264 0.0171% 101 0.0144%
xslt 0.256 0.0166% 99 0.0141%
svg 0.252 0.0163% 169 0.0241%
nimrod 0.236 0.0153% 67 0.0095%
r 0.228 0.0148% 121 0.0172%
robotframework 0.212 0.0137% 85 0.0121%
racket 0.196 0.0127% 117 0.0167%
textile 0.184 0.0119% 61 0.0087%
assembly 0.172 0.0111% 105 0.015%
purescript 0.172 0.0111% 80 0.0114%
unity3d-asset 0.156 0.0101% 101 0.0144%
visual-basic 0.152 0.0098% 48 0.0068%
dm 0.148 0.0096% 16 0.0023%
pod 0.148 0.0096% 54 0.0077%
standard-ml 0.148 0.0096% 72 0.0103%
fortran 0.144 0.0093% 70 0.01%
gettext-catalog 0.132 0.0085% 72 0.0103%
idris 0.132 0.0085% 38 0.0054%
livescript 0.128 0.0083% 63 0.009%
xtend 0.128 0.0083% 55 0.0078%
actionscript 0.12 0.0078% 49 0.007%
vala 0.116 0.0075% 50 0.0071%
awk 0.104 0.0067% 52 0.0074%
ceylon 0.1 0.0065% 49 0.007%
jupyter-notebook 0.1 0.0065% 48 0.0068%
dockerfile 0.096 0.0062% 39 0.0056%
rouge 0.096 0.0062% 41 0.0058%
asp 0.092 0.006% 22 0.0031%
sqf 0.092 0.006% 45 0.0064%
edn 0.088 0.0057% 48 0.0068%
liquid 0.088 0.0057% 30 0.0043%
xquery 0.084 0.0054% 39 0.0056%
linker-script 0.08 0.0052% 37 0.0053%
mediawiki 0.08 0.0052% 33 0.0047%
parrot-internal-representation 0.08 0.0052% 23 0.0033%
solidity 0.08 0.0052% 37 0.0053%
json5 0.076 0.0049% 33 0.0047%
systemverilog 0.076 0.0049% 35 0.005%
thrift 0.076 0.0049% 28 0.004%
groovy-server-pages 0.072 0.0047% 25 0.0036%
processing 0.072 0.0047% 35 0.005%
cuda 0.068 0.0044% 25 0.0036%
graphviz-dot 0.068 0.0044% 35 0.005%
inno-setup 0.064 0.0041% 16 0.0023%
api-blueprint 0.06 0.0039% 23 0.0033%
nsis 0.06 0.0039% 15 0.0021%
gentoo-ebuild 0.056 0.0036% 16 0.0023%
logtalk 0.056 0.0036% 21 0.003%
jasmin 0.052 0.0034% 9 0.0013%
literate-coffeescript 0.052 0.0034% 19 0.0027%
webidl 0.052 0.0034% 6 0.0009%
coldfusion-cfc 0.048 0.0031% 20 0.0028%
opencl 0.048 0.0031% 23 0.0033%
openscad 0.048 0.0031% 21 0.003%
pan 0.048 0.0031% 23 0.0033%
pascal 0.048 0.0031% 25 0.0036%
pony 0.048 0.0031% 16 0.0023%
turtle 0.048 0.0031% 21 0.003%
chapel 0.044 0.0028% 20 0.0028%
ioke 0.044 0.0028% 25 0.0036%
ooc 0.044 0.0028% 15 0.0021%
sparql 0.044 0.0028% 23 0.0033%
applescript 0.04 0.0026% 19 0.0027%
augeas 0.04 0.0026% 13 0.0019%
g-code 0.04 0.0026% 7 0.001%
mirah 0.04 0.0026% 16 0.0023%
capn-proto 0.036 0.0023% 12 0.0017%
digital-command-language 0.036 0.0023% 19 0.0027%
hy 0.036 0.0023% 12 0.0017%
logos 0.036 0.0023% 19 0.0027%
modelica 0.036 0.0023% 15 0.0021%
vcl 0.036 0.0023% 18 0.0026%
antlr 0.032 0.0021% 15 0.0021%
gdscript 0.032 0.0021% 9 0.0013%
graphql 0.032 0.0021% 17 0.0024%
hlsl 0.032 0.0021% 11 0.0016%
gnuplot 0.028 0.0018% 17 0.0024%
http 0.028 0.0018% 19 0.0027%
ninja 0.028 0.0018% 14 0.002%
oz 0.028 0.0018% 8 0.0011%
raml 0.028 0.0018% 9 0.0013%
aspectj 0.024 0.0016% 8 0.0011%
autohotkey 0.024 0.0016% 15 0.0021%
fancy 0.024 0.0016% 8 0.0011%
moonscript 0.024 0.0016% 10 0.0014%
piglatin 0.024 0.0016% 11 0.0016%
stata 0.024 0.0016% 10 0.0014%
urweb 0.024 0.0016% 6 0.0009%
xs 0.024 0.0016% 7 0.001%
yang 0.024 0.0016% 6 0.0009%
agda 0.02 0.0013% 10 0.0014%
coldfusion 0.02 0.0013% 9 0.0013%
emberscript 0.02 0.0013% 7 0.001%
latte 0.02 0.0013% 7 0.001%
literate-haskell 0.02 0.0013% 7 0.001%
postscript 0.02 0.0013% 9 0.0013%
scilab 0.02 0.0013% 10 0.0014%
tcsh 0.02 0.0013% 10 0.0014%
volt 0.02 0.0013% 9 0.0013%
apl 0.016 0.001% 7 0.001%
genshi 0.016 0.001% 3 0.0004%
jsonld 0.016 0.001% 6 0.0009%
krl 0.016 0.001% 4 0.0006%
lean 0.016 0.001% 3 0.0004%
lfe 0.016 0.001% 6 0.0009%
metal 0.016 0.001% 4 0.0006%
monkey 0.016 0.001% 4 0.0006%
mupad 0.016 0.001% 4 0.0006%
nesc 0.016 0.001% 7 0.001%
nit 0.016 0.001% 3 0.0004%
pike 0.016 0.001% 6 0.0009%
purebasic 0.016 0.001% 5 0.0007%
renpy 0.016 0.001% 3 0.0004%
vhdl 0.016 0.001% 5 0.0007%
xproc 0.016 0.001% 3 0.0004%
zephir 0.016 0.001% 4 0.0006%
apacheconf 0.012 0.0008% 2 0.0003%
boo 0.012 0.0008% 2 0.0003%
brainfuck 0.012 0.0008% 2 0.0003%
bro 0.012 0.0008% 3 0.0004%
cartocss 0.012 0.0008% 3 0.0004%
creole 0.012 0.0008% 2 0.0003%
csound 0.012 0.0008% 4 0.0006%
dylan 0.012 0.0008% 2 0.0003%
eagle 0.012 0.0008% 4 0.0006%
ecl 0.012 0.0008% 4 0.0006%
eiffel 0.012 0.0008% 2 0.0003%
flux 0.012 0.0008% 3 0.0004%
io 0.012 0.0008% 4 0.0006%
jsoniq 0.012 0.0008% 6 0.0009%
lilypond 0.012 0.0008% 6 0.0009%
lsl 0.012 0.0008% 3 0.0004%
mask 0.012 0.0008% 4 0.0006%
nginx 0.012 0.0008% 2 0.0003%
nu 0.012 0.0008% 2 0.0003%
pov-ray-sdl 0.012 0.0008% 5 0.0007%
ragel-in-ruby-host 0.012 0.0008% 4 0.0006%
slash 0.012 0.0008% 4 0.0006%
sourcepawn 0.012 0.0008% 3 0.0004%
squirrel 0.012 0.0008% 4 0.0006%
ston 0.012 0.0008% 6 0.0009%
uno 0.012 0.0008% 2 0.0003%
wisp 0.012 0.0008% 3 0.0004%
xbase 0.012 0.0008% 3 0.0004%
yacc 0.012 0.0008% 3 0.0004%
zig 0.012 0.0008% 4 0.0006%
abap 0.008 0.0005% 1 0.0001%
arc 0.008 0.0005% 2 0.0003%
ats 0.008 0.0005% 3 0.0004%
blitzmax 0.008 0.0005% 1 0.0001%
bluespec 0.008 0.0005% 2 0.0003%
c2hs-haskell 0.008 0.0005% 2 0.0003%
clean 0.008 0.0005% 1 0.0001%
dns-zone 0.008 0.0005% 2 0.0003%
forth 0.008 0.0005% 2 0.0003%
harbour 0.008 0.0005% 1 0.0001%
igor-pro 0.008 0.0005% 1 0.0001%
inform-7 0.008 0.0005% 2 0.0003%
isabelle 0.008 0.0005% 2 0.0003%
jflex 0.008 0.0005% 1 0.0001%
literate-agda 0.008 0.0005% 1 0.0001%
maple 0.008 0.0005% 2 0.0003%
mathematica 0.008 0.0005% 1 0.0001%
module-management-system 0.008 0.0005% 1 0.0001%
mtml 0.008 0.0005% 2 0.0003%
netlinx 0.008 0.0005% 1 0.0001%
parrot-assembly 0.008 0.0005% 2 0.0003%
pawn 0.008 0.0005% 3 0.0004%
propeller-spin 0.008 0.0005% 1 0.0001%
pure-data 0.008 0.0005% 1 0.0001%
rebol 0.008 0.0005% 3 0.0004%
red 0.008 0.0005% 1 0.0001%
sage 0.008 0.0005% 1 0.0001%
sas 0.008 0.0005% 1 0.0001%
scaml 0.008 0.0005% 1 0.0001%
smt 0.008 0.0005% 3 0.0004%
supercollider 0.008 0.0005% 2 0.0003%
unrealscript 0.008 0.0005% 1 0.0001%
xpages 0.008 0.0005% 1 0.0001%

Additional Information

Licensing Information

Each sample comes from a code repository with a permissive license. The license is provided by the license field for each sample.

Citation Information

@article{muennighoff2023octopack,
      title={OctoPack: Instruction Tuning Code Large Language Models}, 
      author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
      journal={arXiv preprint arXiv:2308.07124},
      year={2023}
}
Downloads last month
5,205
Edit dataset card

Models trained or fine-tuned on bigcode/commitpackft

Collection including bigcode/commitpackft