Datasets:
language: | |
- en | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
task_categories: | |
- summarization | |
- text-generation | |
task_ids: [] | |
tags: | |
- conditional-text-generation | |
dataset_info: | |
config_name: document | |
features: | |
- name: report | |
dtype: string | |
- name: summary | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 953321013 | |
num_examples: 17517 | |
- name: validation | |
num_bytes: 55820431 | |
num_examples: 973 | |
- name: test | |
num_bytes: 51591123 | |
num_examples: 973 | |
download_size: 506610432 | |
dataset_size: 1060732567 | |
configs: | |
- config_name: document | |
data_files: | |
- split: train | |
path: document/train-* | |
- split: validation | |
path: document/validation-* | |
- split: test | |
path: document/test-* | |
default: true | |
# GovReport dataset for summarization | |
Dataset for summarization of long documents.\ | |
Adapted from this [repo](https://github.com/luyang-huang96/LongDocSum) and this [paper](https://arxiv.org/pdf/2104.02112.pdf)\ | |
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: | |
```python | |
"ccdv/govreport-summarization": ("report", "summary") | |
``` | |
### Data Fields | |
- `id`: paper id | |
- `report`: a string containing the body of the report | |
- `summary`: a string containing the summary of the report | |
### Data Splits | |
This dataset has 3 splits: _train_, _validation_, and _test_. \ | |
Token counts with a RoBERTa tokenizer. | |
| Dataset Split | Number of Instances | Avg. tokens | | |
| ------------- | --------------------|:----------------------| | |
| Train | 17,517 | < 9,000 / < 500 | | |
| Validation | 973 | < 9,000 / < 500 | | |
| Test | 973 | < 9,000 / < 500 | | |
# Cite original article | |
``` | |
@misc{huang2021efficient, | |
title={Efficient Attentions for Long Document Summarization}, | |
author={Luyang Huang and Shuyang Cao and Nikolaus Parulian and Heng Ji and Lu Wang}, | |
year={2021}, | |
eprint={2104.02112}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |