|
--- |
|
license: cc-by-nc-4.0 |
|
pretty_name: imagenet3d |
|
extra_gated_fields: |
|
Name: text |
|
Affiliation: text |
|
--- |
|
## ImageNet3D |
|
|
|
Refer to [github.com/wufeim/imagenet3d](https://github.com/wufeim/imagenet3d) for the full documentation and sample preprocessing code for ImageNet3D. |
|
|
|
### Download Data |
|
|
|
Directly download from the HuggingFace WebUI, or on a server, run |
|
|
|
```py |
|
from huggingface_hub import hf_hub_download |
|
local_path = '/your/local/directory' |
|
hf_hub_download(repo_id='ccvl/ImageNet3D', repo_type='dataset', filename='imagenet3d_0409.zip', local_dir=local_path, local_dir_use_symlinks=False) |
|
``` |
|
|
|
### Example Usage |
|
|
|
```py |
|
from PIL import Image |
|
import numpy as np |
|
|
|
img_path = 'imagenet3d/bed/n02818832_13.JPEG' |
|
annot_path = 'imagenet3d/bed/n02818832_13.npz' |
|
|
|
img = np.array(Image.open(img_path).convert('RGB')) |
|
annot = dict(np.load(annot_path, allow_pickle=True))['annotations'] |
|
|
|
# Number of objects |
|
num_objects = len(annot) |
|
|
|
# Annotation of the first object |
|
azimuth = annot[0]['azimuth'] # float, [0, 2*pi] |
|
elevation = annot[0]['elevation'] # float, [0, 2*pi] |
|
theta = annot[0]['theta'] # float, [0, 2*pi] |
|
cad_index = annot[0]['cad_index'] # int |
|
distance = annot[0]['distance'] # float |
|
viewport = annot[0]['viewport'] # int |
|
img_height = annot[0]['height'] # numpy.uint16 |
|
img_width = annot[0]['width'] # numpy.uint16 |
|
bbox = annot[0]['bbox'] # numpy.ndarray, (x1, y1, x2, y2) |
|
category = annot[0]['class'] # str |
|
principal_x = annot[0]['px'] # float |
|
principal_y = annot[0]['py'] # float |
|
|
|
# label indicating the quality of the object, occluded or low quality |
|
object_status = annot[0]['object_status'] # str, one of ('status_good', 'status_partially', 'status_barely', 'status_bad') |
|
|
|
# label indicating if multiple objects from same category very close to each other |
|
dense = annot[0]['dense'] # str, one of ('dense_yes', 'dense_no') |
|
``` |
|
|