markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Three-point centered-difference formula for second derivative
$f''(x) = \frac{f(x - h) - 2f(x) + f(x + h)}{h^2} - \frac{h^2}{12}f^{(iv)}(c)$
for some $c$ between $x - h$ and $x + h$
Rounding error
Example
Approximate the derivative of $f(x) = e^x$ at $x = 0$ | # Parameters
f = lambda x : math.exp(x)
real_value = 1
h_msg = "$10^{-%d}$"
twp_deri_x1 = lambda x, h : ( f(x + h) - f(x) ) / h
thp_deri_x1 = lambda x, h : ( f(x + h) - f(x - h) ) / (2 * h)
data = [
["h",
"$f'(x) \\approx \\frac{e^{x+h} - e^x}{h}$",
"error",
"$f'(x) \\approx \\frac{e^{x+h} - e^{x-h}}{2h}$",
"error"],
]
for i in range(1,10):
h = pow(10, -i)
twp_deri_x1_value = twp_deri_x1(0, h)
thp_deri_x1_value = thp_deri_x1(0, h)
row = ["", "", "", "", ""]
row[0] = h_msg %i
row[1] = '%.14f' %twp_deri_x1_value
row[2] = '%.14f' %abs(twp_deri_x1_value - real_value)
row[3] = '%.14f' %thp_deri_x1_value
row[4] = '%.14f' %abs(thp_deri_x1_value - real_value)
data.append(row)
table = ply_ff.create_table(data)
plotly.offline.iplot(table, show_link=False) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Extrapolation for order n formula
$ Q \approx \frac{2^nF(h/2) - F(h)}{2^n - 1} $ | sym.init_printing(use_latex=True)
x = sym.Symbol('x')
dx = sym.diff(sym.exp(sym.sin(x)), x)
Math('Derivative : %s' %sym.latex(dx) ) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
5.2 Newton-Cotes Formulas For Numerical Integration
Trapezoid Rule
$\int_{x_0}^{x_1} f(x) dx = \frac{h}{2}(y_0 + y_1) - \frac{h^3}{12}f''(c)$
where $h = x_1 - x_0$ and $c$ is between $x_0$ and $x_1$
Simpson's Rule
$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3}(y_0 + 4y_1 + y_2) - \frac{h^5}{90}f^{(iv)}(c)$
where $h = x_2 - x_1 = x_1 - x_0$ and $c$ is between $x_0$ and $x_2$
Example
Apply the Trapezoid Rule and Simpson's Rule to approximate $\int_{1}^{2} \ln(x) dx$ and find an upper bound for the error in your approximations | # Apply Trapezoid Rule
trapz = scipy.integrate.trapz([np.log(1), np.log(2)], [1, 2])
# Evaluate the error term of Trapezoid Rule
sym_x = sym.Symbol('x')
expr = sym.diff(sym.log(sym_x), sym_x, 2)
trapz_err = abs(expr.subs(sym_x, 1).evalf() / 12)
# Print out results
print('Trapezoid rule : %f and upper bound error : %f' %(trapz, trapz_err) )
# Apply Simpson's Rule
area = scipy.integrate.simps([np.log(1), np.log(1.5), np.log(2)], [1, 1.5, 2])
# Evaluate the error term
sym_x = sym.Symbol('x')
expr = sym.diff(sym.log(sym_x), sym_x, 4)
simps_err = abs( pow(0.5, 5) / 90 * expr.subs(sym_x, 1).evalf() )
# Print out results
print('Simpson\'s rule : %f and upper bound error : %f' %(area, simps_err) ) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Composite Trapezoid Rule
$\int_{a}^{b} f(x) dx = \frac{h}{2} \left ( y_0 + y_m + 2\sum_{i=1}^{m-1}y_i \right ) - \frac{(b-a)h^2}{12}f''(c)$
where $h = (b - a) / m $ and $c$ is between $a$ and $b$
Composite Simpson's Rule
$ \int_{a}^{b}f(x)dx = \frac{h}{3}\left [ y_0 + y_{2m} + 4\sum_{i=1}^{m}y_{2i-1} + 2\sum_{i=1}^{m - 1}y_{2i} \right ] - \frac{(b-a)h^4}{180}f^{(iv)}(c) $
where $c$ is between $a$ and $b$
Example
Carry out four-panel approximations of $\int_{1}^{2} \ln{x} dx$ using the composite Trapezoid Rule and composite Simpson's Rule | # Apply composite Trapezoid Rule
x = np.linspace(1, 2, 5)
y = np.log(x)
trapz = scipy.integrate.trapz(y, x)
# Error term
sym_x = sym.Symbol('x')
expr = sym.diff(sym.log(sym_x), sym_x, 2)
trapz_err = abs( (2 - 1) * pow(0.25, 2) / 12 * expr.subs(sym_x, 1).evalf() )
print('Trapezoid Rule : %f, error = %f' %(trapz, trapz_err) )
# Apply composite Trapezoid Rule
x = np.linspace(1, 2, 9)
y = np.log(x)
area = scipy.integrate.simps(y, x)
# Error term
sym_x = sym.Symbol('x')
expr = sym.diff(sym.log(sym_x), sym_x, 4)
simps_err = abs( (2 - 1) * pow(0.125, 4) / 180 * expr.subs(sym_x, 1).evalf() )
print('Simpson\'s Rule : %f, error = %f' %(area, simps_err) ) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Midpoint Rule
$ \int_{x_0}^{x_1} f(x)dx = hf(\omega) + \frac{h^3}{24}f''(c) $
where $ h = (x_1 - x_0) $, $\omega$ is the midpoint $ x_0 + h / 2 $, and $c$ is between $x_0$ and $x_1$
Composite Midpoint Rule
$ \int_{a}^{b} f(x) dx = h \sum_{i=1}^{m}f(\omega_{i}) + \frac{(b - a)h^2}{24} f''(c) $
where $h = (b - a) / m$ and $c$ is between $a$ and $b$. The $\omega_{i}$ are the midpoints of the $m$ equal subintervals of $[a,b]$
Example
Approximate $\int_{0}^{1} \frac{\sin x}{x} dx$ by using the composite Midpoint Rule with $m = 10$ panels | # Parameters
m = 10
h = (1 - 0) / m
f = lambda x : np.sin(x) / x
mids = np.arange(0 + h/2, 1, h)
# Apply composite midpoint rule
area = h * np.sum(f(mids))
# Error term
sym_x = sym.Symbol('x')
expr = sym.diff(sym.sin(sym_x) / sym_x, sym_x, 2)
mid_err = abs( (1 - 0) * pow(h, 2) / 24 * expr.subs(sym_x, 1).evalf() )
# Print out
print('Composite Midpoint Rule : %.8f, error = %.8f' %(area, mid_err) ) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
5.3 Romberg Integration | def romberg(f, a, b, step):
R = np.zeros(step * step).reshape(step, step)
R[0][0] = (b - a) * (f(a) + f(b)) / 2
for j in range(1, step):
h = (b - a) / pow(2, j)
summ = 0
for i in range(1, pow(2, j - 1) + 1):
summ += h * f(a + (2 * i - 1) * h)
R[j][0] = 0.5 * R[j - 1][0] + summ
for k in range(1, j + 1):
R[j][k] = ( pow(4, k) * R[j][k - 1] - R[j - 1][k - 1] ) / ( pow(4, k) - 1 )
return R[step - 1][step - 1] | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Apply Romberg Integration to approximate $\int_{1}^{2} \ln{x}dx$ | f = lambda x : np.log(x)
result = romberg(f, 1, 2, 4)
print('Romberg Integration : %f' %(result) )
f = lambda x : np.log(x)
result = scipy.integrate.romberg(f, 1, 2, show=True)
print('Romberg Integration : %f' %(result) ) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
5.4 Adaptive Quadrature | ''' Use Trapezoid Rule '''
def adaptive_quadrature(f, a, b, tol):
return adaptive_quadrature_recursively(f, a, b, tol, a, b, 0)
def adaptive_quadrature_recursively(f, a, b, tol, orig_a, orig_b, deep):
c = (a + b) / 2
S = lambda x, y : (y - x) * (f(x) + f(y)) / 2
if abs( S(a, b) - S(a, c) - S(c, b) ) < 3 * tol * (b - a) / (orig_b - orig_a) or deep > 20 :
return S(a, c) + S(c, b)
else:
return adaptive_quadrature_recursively(f, a, c, tol / 2, orig_a, orig_b, deep + 1) + adaptive_quadrature_recursively(f, c, b, tol / 2, orig_a, orig_b, deep + 1)
''' Use Simpon's Rule '''
def adaptive_quadrature(f, a, b, tol):
return adaptive_quadrature_recursively(f, a, b, tol, a, b, 0)
def adaptive_quadrature_recursively(f, a, b, tol, orig_a, orig_b, deep):
c = (a + b) / 2
S = lambda x, y : (y - x) * ( f(x) + 4 * f((x + y) / 2) + f(y) ) / 6
if abs( S(a, b) - S(a, c) - S(c, b) ) < 15 * tol or deep > 20 :
return S(a, c) + S(c, b)
else:
return adaptive_quadrature_recursively(f, a, c, tol / 2, orig_a, orig_b, deep + 1) + adaptive_quadrature_recursively(f, c, b, tol / 2, orig_a, orig_b, deep + 1) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Use Adaptive Quadrature to approximate the integral $ \int_{-1}^{1} (1 + \sin{e^{3x}}) dx $ | f = lambda x : 1 + np.sin(np.exp(3 * x))
val = adaptive_quadrature(f, -1, 1, tol=1e-12)
print(val) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
5.5 Gaussian Quadrature | poly = scipy.special.legendre(2)
# Find roots of polynomials
comp = scipy.linalg.companion(poly)
roots = scipy.linalg.eig(comp)[0] | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Approximate $\int_{-1}^{1} e^{-\frac{x^2}{2}}dx$ using Gaussian Quadrature | f = lambda x : np.exp(-np.power(x, 2) / 2)
quad = scipy.integrate.quadrature(f, -1, 1)
print(quad[0])
# Parametes
a = -1
b = 1
deg = 3
f = lambda x : np.exp( -np.power(x, 2) / 2 )
x, w = scipy.special.p_roots(deg) # Or use numpy.polynomial.legendre.leggauss
quad = np.sum(w * f(x))
print(quad) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Example
Approximate the integral $\int_{1}^{2} \ln{x} dx$ using Gaussian Quadrature | # Parametes
a = 1
b = 2
deg = 4
f = lambda t : np.log( ((b - a) * t + b + a) / 2) * (b - a) / 2
x, w = scipy.special.p_roots(deg)
np.sum(w * f(x)) | 5_Numerical_Differentiation_And_Integration.ipynb | Jim00000/Numerical-Analysis | unlicense |
Second step
Initialize COMPSs runtime
Parameters indicates if the execution will generate task graph, tracefile, monitor interval and debug information. The parameter taskCount is a work around for the dot generation of the legend | ipycompss.start(graph=True, trace=True, debug=True, project_xml='../project.xml', resources_xml='../resources.xml', mpi_worker=True) | tests/sources/python/9_jupyter_notebook/src/simple_mpi.ipynb | mF2C/COMPSs | apache-2.0 |
I'd like to make this figure better - easier to tell which rows people are on
Save Notebook | %%bash
jupyter nbconvert --to slides Exploring_Data.ipynb && mv Exploring_Data.slides.html ../notebook_slides/Exploring_Data_v2.slides.html
jupyter nbconvert --to html Exploring_Data.ipynb && mv Exploring_Data.html ../notebook_htmls/Exploring_Data_v2.html
cp Exploring_Data.ipynb ../notebook_versions/Exploring_Data_v2.ipynb
# push to s3
import sys
import os
sys.path.append(os.getcwd()+'/../')
from src import s3_data_management
s3_data_management.push_results_to_s3('Exploring_Data_v1.html','../notebook_htmls/Exploring_Data_v1.html')
s3_data_management.push_results_to_s3('Exporing_Data_v1.slides.html','../notebook_slides/Exploring_Data_v1.slides.html')
| notebook_versions/Exploring_Data_v2.ipynb | walkon302/CDIPS_Recommender | apache-2.0 |
2. Read in the hanford.csv file | cd C:\Users\Harsha Devulapalli\Desktop\algorithms\class6
df=pd.read_csv("data/hanford.csv") | class6/donow/Devulapalli_Harsha_Class6_DoNow.ipynb | ledeprogram/algorithms | gpl-3.0 |
6. Plot the linear regression line on the scatter plot of values. Calculate the r^2 (coefficient of determination) | df.plot(kind="scatter",x="Exposure",y="Mortality")
plt.plot(df["Exposure"],slope*df["Exposure"]+intercept,"-",color="red")
r = df.corr()['Exposure']['Mortality']
r*r | class6/donow/Devulapalli_Harsha_Class6_DoNow.ipynb | ledeprogram/algorithms | gpl-3.0 |
7. Predict the mortality rate (Cancer per 100,000 man years) given an index of exposure = 10 | def predictor(exposure):
return intercept+float(exposure)*slope
predictor(10) | class6/donow/Devulapalli_Harsha_Class6_DoNow.ipynb | ledeprogram/algorithms | gpl-3.0 |
分词
任务越少,速度越快。如指定仅执行分词,默认细粒度: | HanLP('阿婆主来到北京立方庭参观自然语义科技公司。', tasks='tok').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
执行粗颗粒度分词: | HanLP('阿婆主来到北京立方庭参观自然语义科技公司。', tasks='tok/coarse').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
同时执行细粒度和粗粒度分词: | HanLP('阿婆主来到北京立方庭参观自然语义科技公司。', tasks='tok*') | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
coarse为粗分,fine为细分。
注意
Native API的输入单位限定为句子,需使用多语种分句模型或基于规则的分句函数先行分句。RESTful同时支持全文、句子、已分词的句子。除此之外,RESTful和native两种API的语义设计完全一致,用户可以无缝互换。
自定义词典
自定义词典为分词任务的成员变量,要操作自定义词典,先获取分词任务,以细分标准为例: | tok = HanLP['tok/fine']
tok | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
自定义词典为分词任务的成员变量: | tok.dict_combine, tok.dict_force | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
HanLP支持合并和强制两种优先级的自定义词典,以满足不同场景的需求。
不挂词典: | tok.dict_force = tok.dict_combine = None
HanLP("商品和服务项目", tasks='tok/fine').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
强制模式
强制模式优先输出正向最长匹配到的自定义词条(慎用,详见《自然语言处理入门》第二章): | tok.dict_force = {'和服', '服务项目'}
HanLP("商品和服务项目", tasks='tok/fine').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
与大众的朴素认知不同,词典优先级最高未必是好事,极有可能匹配到不该分出来的自定义词语,导致歧义。自定义词语越长,越不容易发生歧义。这启发我们将强制模式拓展为强制校正功能。
强制校正原理相似,但会将匹配到的自定义词条替换为相应的分词结果: | tok.dict_force = {'和服务': ['和', '服务']}
HanLP("商品和服务项目", tasks='tok/fine').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
合并模式
合并模式的优先级低于统计模型,即dict_combine会在统计模型的分词结果上执行最长匹配并合并匹配到的词条。一般情况下,推荐使用该模式。 | tok.dict_force = None
tok.dict_combine = {'和服', '服务项目'}
HanLP("商品和服务项目", tasks='tok/fine').pretty_print() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
需要算法基础才能理解,初学者可参考《自然语言处理入门》。
空格单词
含有空格、制表符等(Transformer tokenizer去掉的字符)的词语需要用tuple的形式提供: | tok.dict_combine = {('iPad', 'Pro'), '2个空格'}
HanLP("如何评价iPad Pro ?iPad Pro有2个空格", tasks='tok/fine')['tok/fine'] | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
聪明的用户请继续阅读,tuple词典中的字符串其实等价于该字符串的所有可能的切分方式: | dict(tok.dict_combine.config["dictionary"]).keys() | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
单词位置
HanLP支持输出每个单词在文本中的原始位置,以便用于搜索引擎等场景。在词法分析中,非语素字符(空格、换行、制表符等)会被剔除,此时需要额外的位置信息才能定位每个单词: | tok.config.output_spans = True
sent = '2021 年\nHanLPv2.1 为生产环境带来次世代最先进的多语种NLP技术。'
word_offsets = HanLP(sent, tasks='tok/fine')['tok/fine']
print(word_offsets) | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
返回格式为三元组(单词,单词的起始下标,单词的终止下标),下标以字符级别计量。 | for word, begin, end in word_offsets:
assert word == sent[begin:end] | plugins/hanlp_demo/hanlp_demo/zh/tok_mtl.ipynb | hankcs/HanLP | apache-2.0 |
Reading Dataset
Idea here is to read the files in the dataset to extract data for training, testing and the corresponding (activity) labels for them. The outcome is a set of numpy arrays for each set. | # Paths and filenames
DATASET_PATH = "../dataset/UCI HAR/UCI HAR Dataset"
TEST_RELPATH = "/test"
TRAIN_RELPATH = "/train"
VARS_FILENAMES = [
'body_acc_x_',
'body_acc_y_',
'body_acc_z_',
'body_gyro_x_',
'body_gyro_y_',
'body_gyro_z_',
'total_acc_x_',
'total_acc_y_',
'total_acc_z_']
LABELS_DEF_FILE = DATASET_PATH + "/activity_labels.txt"
# Make a list of files for training
trainFiles = [DATASET_PATH + TRAIN_RELPATH + '/Inertial Signals/' + var_filename + 'train.txt' for var_filename in VARS_FILENAMES]
# Make an tensor with data for training
dataTrain = ds.get_data(trainFiles, print_on = True)
# Show dataTrain dimensions
print dataTrain.shape
# Make a list of files for testing
testFiles = [DATASET_PATH + TEST_RELPATH + '/Inertial Signals/' + var_filename + 'test.txt' for var_filename in VARS_FILENAMES]
# Make an tensor with data for training
dataTest = ds.get_data(testFiles, print_on = True)
# Show dataTrain dimensions
print dataTest.shape
# Sensor 0 : Sample 1 (128 samples) (Training set)
fig = plt.figure()
plt.figure(figsize=(16,8))
dataTrain[0,1,:]
plt.plot(dataTrain[0,1,:])
plt.show()
# Sensor 1 : Sample 2 (128 samples) (Test set)
fig = plt.figure()
plt.figure(figsize=(16,8))
dataTest[1,2,:]
plt.plot(dataTest[1,2,:])
plt.show()
# Get the labels values for training samples
trainLabelsFile = DATASET_PATH + TRAIN_RELPATH + '/' + 'y_train.txt'
labelsTrain = ds.get_labels(trainLabelsFile, print_on = True)
print labelsTrain.shape #show dimension
# Get the labels values for testing samples
testLabelsFile = DATASET_PATH + TEST_RELPATH + '/' + 'y_test.txt'
labelsTest = ds.get_labels(testLabelsFile, print_on = True)
print labelsTest.shape #show dimension
# convert outputs to one-hot code
labelsTrainEncoded = ds.encode_onehot(labelsTrain)
labelsTestEncoded = ds.encode_onehot(labelsTest)
# Make a dictionary
labelDictionary = ds.make_labels_dictionary(LABELS_DEF_FILE)
print label_dict
print "\n"
sel = 300
print "label {} ({}) -> {}".format(labelsTrain[sel], label_dict[labelsTrain[sel]], labelsTrainEncoded[sel])
| sources/TempScript.ipynb | francof2a/APC | gpl-3.0 |
Filtered plots | activityToPlot = 2.0
fig = plt.figure()
plt.figure(figsize=(16,8))
plt.title(label_dict[activityToPlot])
for idx, activity in enumerate(labelsTrain):
if activityToPlot == activity:
plt.plot(dataTrain[4,idx,:])
plt.show() | sources/TempScript.ipynb | francof2a/APC | gpl-3.0 |
RNN
first tries | numLayers = 50;
lstm_cell = tf.contrib.rnn.BasicRNNCell(numLayers)
lstm_cell | sources/TempScript.ipynb | francof2a/APC | gpl-3.0 |
We will generate a test set of 50 "bombs", and each "bomb" will be run through a 20-step measurement circuit. We set up the program as explained in previous examples. | # Use local qasm simulator
backend = Aer.get_backend('qasm_simulator')
# Use the IBMQ Quantum Experience
# backend = least_busy(IBMQ.backends())
N = 50 # Number of bombs
steps = 20 # Number of steps for the algorithm, limited by maximum circuit depth
eps = np.pi / steps # Algorithm parameter, small
# Prototype circuit for bomb generation
q_gen = QuantumRegister(1, name='q_gen')
c_gen = ClassicalRegister(1, name='c_gen')
IFM_gen = QuantumCircuit(q_gen, c_gen, name='IFM_gen')
# Prototype circuit for bomb measurement
q = QuantumRegister(2, name='q')
c = ClassicalRegister(steps+1, name='c')
IFM_meas = QuantumCircuit(q, c, name='IFM_meas') | community/terra/qis_adv/vaidman_detection_test.ipynb | antoniomezzacapo/qiskit-tutorial | apache-2.0 |
Generating a random bomb is achieved by simply applying a Hadamard gate to a $q_1$, which starts in $|0\rangle$, and then measuring. This randomly gives a $0$ or $1$, each with equal probability. We run one such circuit for each bomb, since circuits are currently limited to a single measurement. | # Quantum circuits to generate bombs
qc = []
circuits = ["IFM_gen"+str(i) for i in range(N)]
# NB: Can't have more than one measurement per circuit
for circuit in circuits:
IFM = QuantumCircuit(q_gen, c_gen, name=circuit)
IFM.h(q_gen[0]) #Turn the qubit into |0> + |1>
IFM.measure(q_gen[0], c_gen[0])
qc.append(IFM)
_ = [i.qasm() for i in qc] # Suppress the output | community/terra/qis_adv/vaidman_detection_test.ipynb | antoniomezzacapo/qiskit-tutorial | apache-2.0 |
Note that, since we want to measure several discrete instances, we do not want to average over multiple shots. Averaging would yield partial bombs, but we assume bombs are discretely either live or dead. | result = execute(qc, backend=backend, shots=1).result() # Note that we only want one shot
bombs = []
for circuit in qc:
for key in result.get_counts(circuit): # Hack, there should only be one key, since there was only one shot
bombs.append(int(key))
#print(', '.join(('Live' if bomb else 'Dud' for bomb in bombs))) # Uncomment to print out "truth" of bombs
plot_histogram(Counter(('Live' if bomb else 'Dud' for bomb in bombs))) #Plotting bomb generation results | community/terra/qis_adv/vaidman_detection_test.ipynb | antoniomezzacapo/qiskit-tutorial | apache-2.0 |
Testing the Bombs
Here we implement the algorithm described above to measure the bombs. As with the generation of the bombs, it is currently impossible to take several measurements in a single circuit - therefore, it must be run on the simulator. | # Use local qasm simulator
backend = Aer.get_backend('qasm_simulator')
qc = []
circuits = ["IFM_meas"+str(i) for i in range(N)]
#Creating one measurement circuit for each bomb
for i in range(N):
bomb = bombs[i]
IFM = QuantumCircuit(q, c, name=circuits[i])
for step in range(steps):
IFM.ry(eps, q[0]) #First we rotate the control qubit by epsilon
if bomb: #If the bomb is live, the gate is a controlled X gate
IFM.cx(q[0],q[1])
#If the bomb is a dud, the gate is a controlled identity gate, which does nothing
IFM.measure(q[1], c[step]) #Now we measure to collapse the combined state
IFM.measure(q[0], c[steps])
qc.append(IFM)
_ = [i.qasm() for i in qc] # Suppress the output
result = execute(qc, backend=backend, shots=1, max_credits=5).result()
def get_status(counts):
# Return whether a bomb was a dud, was live but detonated, or was live and undetonated
# Note that registers are returned in reversed order
for key in counts:
if '1' in key[1:]:
#If we ever measure a '1' from the measurement qubit (q1), the bomb was measured and will detonate
return '!!BOOM!!'
elif key[0] == '1':
#If the control qubit (q0) was rotated to '1', the state never entangled because the bomb was a dud
return 'Dud'
else:
#If we only measured '0' for both the control and measurement qubit, the bomb was live but never set off
return 'Live'
results = {'Live': 0, 'Dud': 0, "!!BOOM!!": 0}
for circuit in qc:
status = get_status(result.get_counts(circuit))
results[status] += 1
plot_histogram(results) | community/terra/qis_adv/vaidman_detection_test.ipynb | antoniomezzacapo/qiskit-tutorial | apache-2.0 |
Generator network
Here we'll build the generator network. To make this network a universal function approximator, we'll need at least one hidden layer. We should use a leaky ReLU to allow gradients to flow backwards through the layer unimpeded. A leaky ReLU is like a normal ReLU, except that there is a small non-zero output for negative input values.
Variable Scope
Here we need to use tf.variable_scope for two reasons. Firstly, we're going to make sure all the variable names start with generator. Similarly, we'll prepend discriminator to the discriminator variables. This will help out later when we're training the separate networks.
We could just use tf.name_scope to set the names, but we also want to reuse these networks with different inputs. For the generator, we're going to train it, but also sample from it as we're training and after training. The discriminator will need to share variables between the fake and real input images. So, we can use the reuse keyword for tf.variable_scope to tell TensorFlow to reuse the variables instead of creating new ones if we build the graph again.
To use tf.variable_scope, you use a with statement:
python
with tf.variable_scope('scope_name', reuse=False):
# code here
Here's more from the TensorFlow documentation to get another look at using tf.variable_scope.
Leaky ReLU
TensorFlow doesn't provide an operation for leaky ReLUs, so we'll need to make one . For this you can just take the outputs from a linear fully connected layer and pass them to tf.maximum. Typically, a parameter alpha sets the magnitude of the output for negative values. So, the output for negative input (x) values is alpha*x, and the output for positive x is x:
$$
f(x) = max(\alpha * x, x)
$$
Tanh Output
The generator has been found to perform the best with $tanh$ for the generator output. This means that we'll have to rescale the MNIST images to be between -1 and 1, instead of 0 and 1.
Exercise: Implement the generator network in the function below. You'll need to return the tanh output. Make sure to wrap your code in a variable scope, with 'generator' as the scope name, and pass the reuse keyword argument from the function to tf.variable_scope. | def generator(z, out_dim, n_units=128, reuse=False, alpha=0.01):
''' Build the generator network.
Arguments
---------
z : Input tensor for the generator
out_dim : Shape of the generator output
n_units : Number of units in hidden layer
reuse : Reuse the variables with tf.variable_scope
alpha : leak parameter for leaky ReLU
Returns
-------
out, logits:
'''
with tf.variable_scope('generator', reuse=reuse):
# Hidden layer
h1 = tf.layers.dense(z, n_units, activation=None )#tf.nn.elu)
# Leaky ReLU
h1 = tf.maximum(alpha * h1, h1)
# Logits and tanh output
logits = tf.layers.dense(h1, out_dim, activation=None)
out = tf.tanh(logits)
#out = tf.sigmoid(logits)
return out | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Discriminator
The discriminator network is almost exactly the same as the generator network, except that we're using a sigmoid output layer.
Exercise: Implement the discriminator network in the function below. Same as above, you'll need to return both the logits and the sigmoid output. Make sure to wrap your code in a variable scope, with 'discriminator' as the scope name, and pass the reuse keyword argument from the function arguments to tf.variable_scope. | def discriminator(x, n_units=128, reuse=False, alpha=0.01):
''' Build the discriminator network.
Arguments
---------
x : Input tensor for the discriminator
n_units: Number of units in hidden layer
reuse : Reuse the variables with tf.variable_scope
alpha : leak parameter for leaky ReLU
Returns
-------
out, logits:
'''
with tf.variable_scope('discriminator', reuse=reuse):
# Hidden layer
h1 = tf.layers.dense(x, n_units, activation= None)#tf.nn.elu)
# Leaky ReLU
h1 = tf.maximum(alpha * h1, h1)
logits = tf.layers.dense(h1, 1, activation=None)
#out = tf.sigmoid(logits)
out = tf.tanh(logits)
return out, logits | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Hyperparameters | # Size of input image to discriminator
input_size = 784 # 28x28 MNIST images flattened
# Size of latent vector to generator
z_size = 100
# Sizes of hidden layers in generator and discriminator
g_hidden_size = 128
d_hidden_size = 128
# Leak factor for leaky ReLU
alpha = 0.01
# Label smoothing
smooth = 0.25 | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Discriminator and Generator Losses
Now we need to calculate the losses, which is a little tricky. For the discriminator, the total loss is the sum of the losses for real and fake images, d_loss = d_loss_real + d_loss_fake. The losses will by sigmoid cross-entropies, which we can get with tf.nn.sigmoid_cross_entropy_with_logits. We'll also wrap that in tf.reduce_mean to get the mean for all the images in the batch. So the losses will look something like
python
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
For the real image logits, we'll use d_logits_real which we got from the discriminator in the cell above. For the labels, we want them to be all ones, since these are all real images. To help the discriminator generalize better, the labels are reduced a bit from 1.0 to 0.9, for example, using the parameter smooth. This is known as label smoothing, typically used with classifiers to improve performance. In TensorFlow, it looks something like labels = tf.ones_like(tensor) * (1 - smooth)
The discriminator loss for the fake data is similar. The logits are d_logits_fake, which we got from passing the generator output to the discriminator. These fake logits are used with labels of all zeros. Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that.
Finally, the generator losses are using d_logits_fake, the fake image logits. But, now the labels are all ones. The generator is trying to fool the discriminator, so it wants to discriminator to output ones for fake images.
Exercise: Calculate the losses for the discriminator and the generator. There are two discriminator losses, one for real images and one for fake images. For the real image loss, use the real logits and (smoothed) labels of ones. For the fake image loss, use the fake logits with labels of all zeros. The total discriminator loss is the sum of those two losses. Finally, the generator loss again uses the fake logits from the discriminator, but this time the labels are all ones because the generator wants to fool the discriminator. | # Calculate losses
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels = tf.ones_like(d_logits_real) * (1 - smooth)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels = tf.ones_like(d_logits_real) * -(1 - smooth)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels = tf.ones_like(d_logits_fake) * (1 - smooth))) | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Training | def view_samples(epoch, samples):
fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True)
for ax, img in zip(axes.flatten(), samples[epoch]):
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(img.reshape((28,28)), cmap='Greys_r')
plt.show()
return fig, axes
batch_size = 100
epochs = 1
samples = []
losses = []
saver = tf.train.Saver(var_list = g_vars)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for ii in range(mnist.train.num_examples//batch_size):
batch = mnist.train.next_batch(batch_size)
# Get images, reshape and rescale to pass to D
batch_images = batch[0].reshape((batch_size, 784))
batch_images = batch_images*2 - 1
# Sample random noise for G
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
# Run optimizers
_ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})
_ = sess.run(g_train_opt, feed_dict={input_z: batch_z})
# At the end of each epoch, get the losses and print them out
%time train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images})
train_loss_g = g_loss.eval({input_z: batch_z})
print("Epoch {}/{}...".format(e+1, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
# Save losses to view after training
losses.append((train_loss_d, train_loss_g))
# Sample from generator as we're training for viewing afterwards
sample_z = np.random.uniform(-1, 1, size=(16, z_size))
gen_samples = sess.run(
generator(input_z, input_size, reuse=True),
feed_dict={input_z: sample_z})
samples.append(gen_samples)
saver.save(sess, './checkpoints/generator_my.ckpt')
_ = view_samples(-1, samples)
# Save training generator samples
with open('train_samples_my.pkl', 'wb') as f:
pkl.dump(samples, f) | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Generator samples from training
Here we can view samples of images from the generator. First we'll look at images taken while training. | # Load samples from generator taken while training
with open('train_samples.pkl', 'rb') as f:
samples = pkl.load(f) | gan_mnist/Intro_to_GANs_Exercises.ipynb | AndysDeepAbstractions/deep-learning | mit |
Compute and visualize statistics
tfdv.generate_statistics_from_csv로 데이터 분포 생성
많은 데이터일 경우 내부적으로 Apache Beam을 사용해 병렬처리
Beam의 PTransform과 결합 가능 | train_stats = tfdv.generate_statistics_from_csv(data_location=TRAIN_DATA) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
tfdv.visualize_statistics를 사용해 시각화, 내부적으론 Facets을 사용한다 함
numeric, categorical feature들을 나눔 | tfdv.visualize_statistics(train_stats)
| Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Infer a scahema
데이터를 통해 스키마 추론
tfdv.infer_schema
tfdv.display_schema | schema = tfdv.infer_schema(statistics=train_stats)
tfdv.display_schema(schema=schema) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
평가 데이터 에러 체크
train, validation에서 다른 데이터들이 있음
캐글할 때 유용할듯 | # Compute stats for evaluation data
eval_stats = tfdv.generate_statistics_from_csv(data_location=EVAL_DATA)
# Compare evaluation data with training data
tfdv.visualize_statistics(lhs_statistics=eval_stats, rhs_statistics=train_stats,
lhs_name='EVAL_DATASET', rhs_name='TRAIN_DATASET') | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Check for evaluation anomalies
train 데이터엔 없었는데 validation에 생긴 데이터 있는지 확인 | # Check eval data for errors by validating the eval data stats using the previously inferred schema.
anomalies = tfdv.validate_statistics(statistics=eval_stats, schema=schema)
tfdv.display_anomalies(anomalies) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Fix evaluation anomalies in the schema
수정 | # Relax the minimum fraction of values that must come from the domain for feature company.
company = tfdv.get_feature(schema, 'company')
company.distribution_constraints.min_domain_mass = 0.9
# Add new value to the domain of feature payment_type.
payment_type_domain = tfdv.get_domain(schema, 'payment_type')
payment_type_domain.value.append('Prcard')
# Validate eval stats after updating the schema
updated_anomalies = tfdv.validate_statistics(eval_stats, schema)
tfdv.display_anomalies(updated_anomalies) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Schema Environments
serving할 때도 스키마 체크해야 함
Environments can be used to express such requirements. In particular, features in schema can be associated with a set of environments using default_environment, in_environment and not_in_environment. | serving_stats = tfdv.generate_statistics_from_csv(SERVING_DATA)
serving_anomalies = tfdv.validate_statistics(serving_stats, schema)
tfdv.display_anomalies(serving_anomalies) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Int value가 있음 => Float으로 수정 | options = tfdv.StatsOptions(schema=schema, infer_type_from_schema=True)
serving_stats = tfdv.generate_statistics_from_csv(SERVING_DATA, stats_options=options)
serving_anomalies = tfdv.validate_statistics(serving_stats, schema)
tfdv.display_anomalies(serving_anomalies)
# All features are by default in both TRAINING and SERVING environments.
schema.default_environment.append('TRAINING')
schema.default_environment.append('SERVING')
# Specify that 'tips' feature is not in SERVING environment.
tfdv.get_feature(schema, 'tips').not_in_environment.append('SERVING')
serving_anomalies_with_env = tfdv.validate_statistics(
serving_stats, schema, environment='SERVING')
tfdv.display_anomalies(serving_anomalies_with_env) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Check for drift and skew
Drift
Drift detection is supported for categorical features and between consecutive spans of data (i.e., between span N and span N+1), such as between different days of training data. We express drift in terms of L-infinity distance, and you can set the threshold distance so that you receive warnings when the drift is higher than is acceptable. Setting the correct distance is typically an iterative process requiring domain knowledge and experimentation.
Skew
Schema Skew
같은 스키마를 가지지 않을 때
Feature Skew
Feature 생성 로직이 변경될 때
Dsitribution Skew
Train, Serving시 데이터 분포가 다를 경우 | # Add skew comparator for 'payment_type' feature.
payment_type = tfdv.get_feature(schema, 'payment_type')
payment_type.skew_comparator.infinity_norm.threshold = 0.01
# Add drift comparator for 'company' feature.
company=tfdv.get_feature(schema, 'company')
company.drift_comparator.infinity_norm.threshold = 0.001
skew_anomalies = tfdv.validate_statistics(train_stats, schema,
previous_statistics=eval_stats,
serving_statistics=serving_stats)
tfdv.display_anomalies(skew_anomalies) | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
Freeze the schema
스키마 저장 | from tensorflow.python.lib.io import file_io
from google.protobuf import text_format
file_io.recursive_create_dir(OUTPUT_DIR)
schema_file = os.path.join(OUTPUT_DIR, 'schema.pbtxt')
tfdv.write_schema_text(schema, schema_file)
!cat {schema_file} | Tensorflow-Extended/TFDV(data validation) example.ipynb | zzsza/TIL | mit |
轴向连接
DataFrame 中有很丰富的merge方法,此外还有一种数据合并运算被称作连接(concatenation)、binding、stacking。
在Numpy中,也有concatenation函数。 | import numpy as np
arr1 = np.arange(12).reshape(3,4)
print(arr1)
np.concatenate([arr1, arr1], axis=1) | machine-learning/McKinney-pythonbook2013/chapter07-note.ipynb | yw-fang/readingnotes | apache-2.0 |
对于pandas对象,带有标签的轴使我们能够进一步推广数组的连接运算。
pandas中的concate函数提供了一些功能,来操作这种合并运算
下方这个例子中,有三个series,这三个series的索引没有重叠,我们来看看,concate是如何给出合并运算的。 | import pandas as pd
seri1 = pd.Series([-1,2], index=list('ab'))
seri2 = pd.Series([2,3,4], index=list('cde'))
seri3 = pd.Series([5,6], index=list('fg'))
print(seri1)
print(seri2)
print(seri3)
print(seri1)
pd.concat([seri1,seri2,seri3]) | machine-learning/McKinney-pythonbook2013/chapter07-note.ipynb | yw-fang/readingnotes | apache-2.0 |
By default,concat是在axis=0上工作的,最终产生一个全新的Series。如果传入axis=1,那么结果就会成为一个 DataFrame (axis=1 是列) | pd.concat([seri1, seri2, seri3],axis=1, sort=False)
pd.concat([seri1, seri2, seri3],axis=1, sort=False,join='inner') # 传入 inner,得到并集,该处并集为none
seri4 = pd.concat([seri1*5, seri3])
print(seri4)
seri4 = pd.concat([seri1*5, seri3],axis=1, join='inner')
print(seri4) | machine-learning/McKinney-pythonbook2013/chapter07-note.ipynb | yw-fang/readingnotes | apache-2.0 |
Appendix during writing this note
define a function which returns a string with repeated letters | # Ref: https://stackoverflow.com/questions/38273353/how-to-repeat-individual-characters-in-strings-in-python
def special_sign(sign, times):
# sign is string, times is integer
str_list = sign*times
new_str = ''.join([i for i in str_list])
return(new_str)
print(special_sign('*',20)) | machine-learning/McKinney-pythonbook2013/chapter07-note.ipynb | yw-fang/readingnotes | apache-2.0 |
Next, we write a function to construct the factor graphs and prepare labels for training. For each factor graph instance, the structure is a chain but the number of nodes and edges depend on the number of letters, where unary factors will be added for each letter, pairwise factors will be added for each pair of neighboring letters. Besides, the first and last letter will get an additional bias factor respectively. | def prepare_data(x, y, ftype, num_samples):
"""prepare FactorGraphFeatures and FactorGraphLabels """
from shogun import Factor, TableFactorType, FactorGraph
from shogun import FactorGraphObservation, FactorGraphLabels, FactorGraphFeatures
samples = FactorGraphFeatures(num_samples)
labels = FactorGraphLabels(num_samples)
for i in xrange(num_samples):
n_vars = x[0,i].shape[1]
data = x[0,i].astype(np.float64)
vc = np.array([n_stats]*n_vars, np.int32)
fg = FactorGraph(vc)
# add unary factors
for v in xrange(n_vars):
datau = data[:,v]
vindu = np.array([v], np.int32)
facu = Factor(ftype[0], vindu, datau)
fg.add_factor(facu)
# add pairwise factors
for e in xrange(n_vars-1):
datap = np.array([1.0])
vindp = np.array([e,e+1], np.int32)
facp = Factor(ftype[1], vindp, datap)
fg.add_factor(facp)
# add bias factor to first letter
datas = np.array([1.0])
vinds = np.array([0], np.int32)
facs = Factor(ftype[2], vinds, datas)
fg.add_factor(facs)
# add bias factor to last letter
datat = np.array([1.0])
vindt = np.array([n_vars-1], np.int32)
fact = Factor(ftype[3], vindt, datat)
fg.add_factor(fact)
# add factor graph
samples.add_sample(fg)
# add corresponding label
states_gt = y[0,i].astype(np.int32)
states_gt = states_gt[0,:]; # mat to vector
loss_weights = np.array([1.0/n_vars]*n_vars)
fg_obs = FactorGraphObservation(states_gt, loss_weights)
labels.add_label(fg_obs)
return samples, labels
# prepare training pairs (factor graph, node states)
n_tr_samples = 350 # choose a subset of training data to avoid time out on buildbot
samples, labels = prepare_data(p_tr, l_tr, ftype_all, n_tr_samples) | doc/ipython-notebooks/structure/FGM.ipynb | cfjhallgren/shogun | gpl-3.0 |
In Shogun, we implemented several batch solvers and online solvers. Let's first try to train the model using a batch solver. We choose the dual bundle method solver (<a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDualLibQPBMSOSVM.html">DualLibQPBMSOSVM</a>) [2], since in practice it is slightly faster than the primal n-slack cutting plane solver (<a a href="http://www.shogun-toolbox.org/doc/en/latest/PrimalMosekSOSVM_8h.html">PrimalMosekSOSVM</a>) [3]. However, it still will take a while until convergence. Briefly, in each iteration, a gradually tighter piece-wise linear lower bound of the objective function will be constructed by adding more cutting planes (most violated constraints), then the approximate QP will be solved. Finding a cutting plane involves calling the max oracle $H_i(\mathbf{w})$ and in average $N$ calls are required in an iteration. This is basically why the training is time consuming. | from shogun import DualLibQPBMSOSVM
from shogun import BmrmStatistics
import pickle
import time
# create bundle method SOSVM, there are few variants can be chosen
# BMRM, Proximal Point BMRM, Proximal Point P-BMRM, NCBM
# usually the default one i.e. BMRM is good enough
# lambda is set to 1e-2
bmrm = DualLibQPBMSOSVM(model, labels, 0.01)
bmrm.set_TolAbs(20.0)
bmrm.set_verbose(True)
bmrm.set_store_train_info(True)
# train
t0 = time.time()
bmrm.train()
t1 = time.time()
w_bmrm = bmrm.get_w()
print "BMRM took", t1 - t0, "seconds." | doc/ipython-notebooks/structure/FGM.ipynb | cfjhallgren/shogun | gpl-3.0 |
In our case, we have 101 active cutting planes, which is much less than 4082, i.e. the number of parameters. We could expect a good model by looking at these statistics. Now come to the online solvers. Unlike the cutting plane algorithms re-optimizes over all the previously added dual variables, an online solver will update the solution based on a single point. This difference results in a faster convergence rate, i.e. less oracle calls, please refer to Table 1 in [4] for more detail. Here, we use the stochastic subgradient descent (<a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CStochasticSOSVM.html">StochasticSOSVM</a>) to compare with the BMRM algorithm shown before. | from shogun import StochasticSOSVM
# the 3rd parameter is do_weighted_averaging, by turning this on,
# a possibly faster convergence rate may be achieved.
# the 4th parameter controls outputs of verbose training information
sgd = StochasticSOSVM(model, labels, True, True)
sgd.set_num_iter(100)
sgd.set_lambda(0.01)
# train
t0 = time.time()
sgd.train()
t1 = time.time()
w_sgd = sgd.get_w()
print "SGD took", t1 - t0, "seconds." | doc/ipython-notebooks/structure/FGM.ipynb | cfjhallgren/shogun | gpl-3.0 |
Inference
Next, we show how to do inference with the learned model parameters for a given data point. | # get testing data
samples_ts, labels_ts = prepare_data(p_ts, l_ts, ftype_all, n_ts_samples)
from shogun import FactorGraphFeatures, FactorGraphObservation, TREE_MAX_PROD, MAPInference
# get a factor graph instance from test data
fg0 = samples_ts.get_sample(100)
fg0.compute_energies()
fg0.connect_components()
# create a MAP inference using tree max-product
infer_met = MAPInference(fg0, TREE_MAX_PROD)
infer_met.inference()
# get inference results
y_pred = infer_met.get_structured_outputs()
y_truth = FactorGraphObservation.obtain_from_generic(labels_ts.get_label(100))
print y_pred.get_data()
print y_truth.get_data() | doc/ipython-notebooks/structure/FGM.ipynb | cfjhallgren/shogun | gpl-3.0 |
Evaluation
In the end, we check average training error and average testing error. The evaluation can be done by two methods. We can either use the apply() function in the structured output machine or use the <a href="http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CSOSVMHelper.html">SOSVMHelper</a>. | from shogun import LabelsFactory, SOSVMHelper
# training error of BMRM method
bmrm.set_w(w_bmrm)
model.w_to_fparams(w_bmrm)
lbs_bmrm = bmrm.apply()
acc_loss = 0.0
ave_loss = 0.0
for i in xrange(n_tr_samples):
y_pred = lbs_bmrm.get_label(i)
y_truth = labels.get_label(i)
acc_loss = acc_loss + model.delta_loss(y_truth, y_pred)
ave_loss = acc_loss / n_tr_samples
print('BMRM: Average training error is %.4f' % ave_loss)
# training error of stochastic method
print('SGD: Average training error is %.4f' % SOSVMHelper.average_loss(w_sgd, model))
# testing error
bmrm.set_features(samples_ts)
bmrm.set_labels(labels_ts)
lbs_bmrm_ts = bmrm.apply()
acc_loss = 0.0
ave_loss_ts = 0.0
for i in xrange(n_ts_samples):
y_pred = lbs_bmrm_ts.get_label(i)
y_truth = labels_ts.get_label(i)
acc_loss = acc_loss + model.delta_loss(y_truth, y_pred)
ave_loss_ts = acc_loss / n_ts_samples
print('BMRM: Average testing error is %.4f' % ave_loss_ts)
# testing error of stochastic method
print('SGD: Average testing error is %.4f' % SOSVMHelper.average_loss(sgd.get_w(), model)) | doc/ipython-notebooks/structure/FGM.ipynb | cfjhallgren/shogun | gpl-3.0 |