Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
class label
0EP3500042B1
0EP3500042B1
0EP3500042B1
1EP3500065B1
1EP3500065B1
1EP3500065B1
2EP3500146B1
3EP3500158B1
4EP3500171B1
4EP3500171B1
6EP3500223B1
7EP3500226B1
8EP3500306B1
8EP3500306B1
8EP3500306B1
8EP3500306B1
10EP3500379B1
10EP3500379B1
11EP3500383B1
12EP3500422B1
12EP3500422B1
13EP3500497B1
13EP3500497B1
14EP3500682B1
14EP3500682B1
16EP3500867B1
16EP3500867B1
16EP3500867B1
16EP3500867B1
16EP3500867B1
17EP3500908B1
18EP3500923B1
18EP3500923B1
18EP3500923B1
18EP3500923B1
18EP3500923B1
18EP3500923B1
18EP3500923B1
19EP3500965B1
20EP3500968B1
20EP3500968B1
20EP3500968B1
20EP3500968B1
21EP3500986B1
21EP3500986B1
22EP3501017B1
22EP3501017B1
22EP3501017B1
23EP3501024B1
23EP3501024B1
23EP3501024B1
23EP3501024B1
23EP3501024B1
23EP3501024B1
24EP3501039B1
25EP3501080B1
25EP3501080B1
25EP3501080B1
27EP3501110B1
27EP3501110B1
28EP3501113B1
28EP3501113B1
29EP3501114B1
30EP3501122B1
31EP3501145B1
31EP3501145B1
32EP3501149B1
32EP3501149B1
33EP3501161B1
33EP3501161B1
34EP3501177B1
34EP3501177B1
35EP3501199B1
35EP3501199B1
35EP3501199B1
35EP3501199B1
35EP3501199B1
35EP3501199B1
36EP3501206B1
37EP3501217B1
37EP3501217B1
38EP3501259B1
38EP3501259B1
39EP3501307B1
39EP3501307B1
39EP3501307B1
39EP3501307B1
40EP3501333B1
40EP3501333B1
41EP3501334B1
41EP3501334B1
42EP3501335B1
42EP3501335B1
43EP3501346B1
43EP3501346B1
43EP3501346B1
44EP3501359B1
45EP3501398B1
46EP3501438B1
47EP3501454B1
End of preview.

PatFig Dataset

PatFig Dataset Logo

Introduction

The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research and applications in image captioning, abstract reasoning, patent analysis, and automated documentprocessing. The overarching goal of this dataset is to advance the research in visually situated language understanding towards more hollistic consumption of the visual and textual data.

Dataset Description

Overview

This dataset includes patent figures accompanied by short and long captions, reference numerals, corresponding terms, and a minimal set of claims, offering a detailed insight into the depicted inventions.

Structure

  • Image Files: Technical drawings, block diagrams, flowcharts, plots, and grayscale photographs.
  • Captions: Each figure is accompanied by a short and long caption describing its content and context.
  • Reference Numerals and Terms: Key components in the figures are linked to their descriptions through reference numerals.
  • Minimal Set of Claims: Claims sentences summarizing the interactions among elements within each figure.
  • Metadata: Includes image names, publication numbers, titles, figure identifiers, and more. The detailed descriptions of the fields are available in the Dataset Documentation.

Categories

The dataset is categorized according to the International Patent Classification (IPC) system, ensuring a diverse representation of technological domains.

Usage

The PatFig Dataset is intended for use in patent image analysis, document image processing, visual question answering tasks, and image captioning in technical contexts. Users are encouraged to explore innovative applications in related fields.

PatFig Image Captioning Version PatFig VQA Version

Challenges and Considerations

Users should be aware of challenges such as interpreting compound figures. PatFig was built automatically using high-performance machine-learning and deep-learning methods. Therefore, the data might contain noise, which was mentioned in the corresponding paper.

License and Usage Guidelines

The dataset is released under a Creative Commons Attribution-NonCommercial 2.0 Generic (CC BY-NC 2.0) License. It is intended for non-commercial use, and users must adhere to the license terms.

Cite as

@inproceedings{aubakirova2023patfig,
  title={PatFig: Generating Short and Long Captions for Patent Figures},
  author={Aubakirova, Dana and Gerdes, Kim and Liu, Lufei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2843--2849},
  year={2023}
}
Downloads last month
555