repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lmqg/mt5-base-dequad-qg | lmqg | mt5 | 20 | 189 | transformers | 0 | text2text-generation | true | false | false | cc-by-4.0 | ['de'] | ['lmqg/qg_dequad'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['question generation'] | true | true | true | 6,519 | false |
# Model Card of `lmqg/mt5-base-dequad-qg`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
- **Language:** de
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-base-dequad-qg")
# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-dequad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 80.39 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_1 | 10.85 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_2 | 4.61 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_3 | 2.06 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_4 | 0.87 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| METEOR | 13.65 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| MoverScore | 55.73 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| ROUGE_L | 11.1 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-base-dequad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 90.63 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (MoverScore) | 65.32 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (BERTScore) | 90.65 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (MoverScore) | 65.34 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (BERTScore) | 90.61 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (MoverScore) | 65.3 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-base-dequad-ae`](https://huggingface.co/lmqg/mt5-base-dequad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-base-dequad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.lmqg_mt5-base-dequad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 76.86 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (MoverScore) | 52.96 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (BERTScore) | 76.28 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (MoverScore) | 52.93 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (BERTScore) | 77.55 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (MoverScore) | 53.06 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_dequad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 17
- batch: 4
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-dequad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
| 4de004e2d0863e5beafbb7d59a3a40dd |
Mirelle/t5-small-finetuned-ro-to-en | Mirelle | t5 | 12 | 3 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | ['wmt16'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,570 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-ro-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5877
- Bleu: 13.4499
- Gen Len: 17.5073
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.6167 | 0.05 | 2000 | 1.8649 | 9.7029 | 17.5753 |
| 1.4551 | 0.1 | 4000 | 1.7810 | 10.6382 | 17.5358 |
| 1.3723 | 0.16 | 6000 | 1.7369 | 11.1285 | 17.5158 |
| 1.3373 | 0.21 | 8000 | 1.7086 | 11.6173 | 17.5013 |
| 1.2935 | 0.26 | 10000 | 1.6890 | 12.0641 | 17.5038 |
| 1.2632 | 0.31 | 12000 | 1.6670 | 12.3012 | 17.5253 |
| 1.2463 | 0.37 | 14000 | 1.6556 | 12.3991 | 17.5153 |
| 1.2272 | 0.42 | 16000 | 1.6442 | 12.7392 | 17.4732 |
| 1.2052 | 0.47 | 18000 | 1.6328 | 12.8446 | 17.5143 |
| 1.1985 | 0.52 | 20000 | 1.6233 | 13.0892 | 17.4807 |
| 1.1821 | 0.58 | 22000 | 1.6153 | 13.1529 | 17.4952 |
| 1.1791 | 0.63 | 24000 | 1.6079 | 13.2964 | 17.5088 |
| 1.1698 | 0.68 | 26000 | 1.6038 | 13.3548 | 17.4842 |
| 1.154 | 0.73 | 28000 | 1.5957 | 13.3012 | 17.5053 |
| 1.1634 | 0.79 | 30000 | 1.5931 | 13.4203 | 17.5083 |
| 1.1487 | 0.84 | 32000 | 1.5893 | 13.3959 | 17.5123 |
| 1.1495 | 0.89 | 34000 | 1.5875 | 13.3745 | 17.4902 |
| 1.1458 | 0.94 | 36000 | 1.5877 | 13.4129 | 17.5043 |
| 1.1465 | 1.0 | 38000 | 1.5877 | 13.4499 | 17.5073 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
| 65b8db644725c27cb897b9fe58105171 |
google/multiberts-seed_0-step_60k | google | bert | 8 | 15 | transformers | 0 | null | true | true | false | apache-2.0 | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['multiberts', 'multiberts-seed_0', 'multiberts-seed_0-step_60k'] | false | true | true | 3,515 | false |
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 60k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 60k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_60k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_60k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
| 91c2d4e2078ff630fa229149d0079a86 |
jonfd/electra-base-igc-is | jonfd | electra | 7 | 2 | transformers | 0 | null | true | false | false | cc-by-4.0 | ['is'] | ['igc'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 607 | false |
# Icelandic ELECTRA-Base
This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105.
# Acknowledgments
This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC).
This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture. | 60559a876ff24f32f3df16dfa8098623 |
kingery/hyc-06-512-sd15-2e-6-1500-man-ddim | kingery | null | 24 | 5 | diffusers | 0 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['text-to-image'] | false | true | true | 1,590 | false | ### hyc-06-512-sd15-2e-6-1500-man-ddim on Stable Diffusion via Dreambooth
#### model by kingery
This your the Stable Diffusion model fine-tuned the hyc-06-512-sd15-2e-6-1500-man-ddim concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt`: **a photo of yangguangkechuang man**
You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb).
And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Here are the images used for training this concept:
![image 0](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/02.png)
![image 1](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/03.png)
![image 2](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/04.png)
![image 3](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/01.png)
![image 4](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/06.png)
![image 5](https://huggingface.co/kingery/hyc-06-512-sd15-2e-6-1500-man-ddim/resolve/main/concept_images/05.png)
| c5bc3c056f2003e62d438f0ac7ee4d71 |
hassnain/wav2vec2-base-timit-demo-colab3 | hassnain | wav2vec2 | 16 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,462 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab3
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1016
- Wer: 0.6704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0006 | 13.89 | 500 | 3.0706 | 1.0 |
| 1.8796 | 27.78 | 1000 | 1.1154 | 0.7414 |
| 0.548 | 41.67 | 1500 | 1.0826 | 0.7034 |
| 0.2747 | 55.56 | 2000 | 1.1016 | 0.6704 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
| 7aadba30b8a9bb4f9dbe3869edbbc0a1 |