language:
- en
license: cc-by-sa-4.0
size_categories:
- 1K<n<10K
task_categories:
- text-classification
- zero-shot-classification
- image-classification
pretty_name: IsoBench
dataset_info:
- config_name: chemistry
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
dtype: string
- name: label
dtype: int64
- name: description
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 2611154
num_examples: 75
download_size: 2517594
dataset_size: 2611154
- config_name: graph_connectivity
features:
- name: image
dtype: image
- name: query_nodes_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: query_node_1
dtype: int64
- name: query_node_2
dtype: int64
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 62682553
num_examples: 128
download_size: 19391513
dataset_size: 62682553
- config_name: graph_isomorphism
features:
- name: image
dtype: image
- name: adjacency_matrix_G
dtype: string
- name: adjacency_matrix_H
dtype: string
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 25082487
num_examples: 128
download_size: 8931620
dataset_size: 25082487
- config_name: graph_maxflow
features:
- name: image
dtype: image
- name: source_node
dtype: int64
- name: source_node_color
dtype: string
- name: sink_node
dtype: int64
- name: sink_node_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 44530168
num_examples: 128
download_size: 16112025
dataset_size: 44530168
- config_name: math_breakpoint
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 14120119
num_examples: 256
download_size: 12531449
dataset_size: 14120119
- config_name: math_convexity
features:
- name: image
dtype: image
- name: domain
dtype: string
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 11176740
num_examples: 256
download_size: 9253917
dataset_size: 11176740
- config_name: math_parity
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 17012598
num_examples: 384
download_size: 14230745
dataset_size: 17012598
- config_name: physics
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
dtype: string
- name: label
dtype: int64
- name: description
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 2354556
num_examples: 75
download_size: 2156044
dataset_size: 2354556
- config_name: puzzle
features:
- name: image
dtype: image
- name: anl
dtype: string
- name: pgn
dtype: string
- name: fen
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 5192310
num_examples: 200
download_size: 4856203
dataset_size: 5192310
- config_name: winner_id
features:
- name: image
dtype: image
- name: anl
dtype: string
- name: pgn
dtype: string
- name: fen
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 6486731
num_examples: 257
download_size: 6026970
dataset_size: 6486731
configs:
- config_name: chemistry
data_files:
- split: validation
path: chemistry/validation-*
- config_name: graph_connectivity
data_files:
- split: validation
path: graph_connectivity/validation-*
- config_name: graph_isomorphism
data_files:
- split: validation
path: graph_isomorphism/validation-*
- config_name: graph_maxflow
data_files:
- split: validation
path: graph_maxflow/validation-*
- config_name: math_breakpoint
data_files:
- split: validation
path: math_breakpoint/validation-*
- config_name: math_convexity
data_files:
- split: validation
path: math_convexity/validation-*
- config_name: math_parity
data_files:
- split: validation
path: math_parity/validation-*
- config_name: physics
data_files:
- split: validation
path: physics/validation-*
- config_name: puzzle
data_files:
- split: validation
path: puzzle/validation-*
- config_name: winner_id
data_files:
- split: validation
path: winner_id/validation-*
Dataset Card for IsoBench
Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our paper or website!
Table of Contents
Uses
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks.
In tatal there are 1,887 samples in the validation
split with ground-truth labels provided.
The test
split without labels is coming soon......
We will show how to load the data for each subtask.
TL;DR
There are 10 subtasks in total: math_breakpoint, math_convexity, math_parity, graph_connectivity, graph_maxflow, graph_isomorphism, winner_id, puzzle, chemistry, physics
.
You can load a subtask
via
from datasets import load_dataset
ds_subtask = load_dataset('isobench/IsoBench', subtask, split='validation')
Direct Use
IsoBench is designed with two objectives, which are:
- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (e.g. mathematical expression and plot of a function) representations of the same input.
- Contributing a language-only/multimodal benchmark in the science domain.
Mathematics
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples.
- Parity implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither.
- Convexity implements a binary classification problem for a model to classify an input function as convex or concave. Note: some functions are only convex (resp. concave) within a certain domain (e.g.
x > 0
), which is reported in thedomain
field of each sample. We recommend providing this information as part of the prompt! - Breakpoint counts the number of breakpoints (i.e. intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem.
from datasets import load_dataset
dataset_parity = load_dataset('isobench/IsoBench', 'math_parity', split='validation')
dataset_convexity = load_dataset('isobench/IsoBench', 'math_convexity', split='validation')
dataset_breakpoint = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation')
Algorithms
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism.
You can download the data by
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation')
Each task has 128 dev samples under the validation split.
Games
[More Information Needed]
Science
[More Information Needed]
Data Fields
Mathematics
image
: a PIL Image feature;latex
: astring
feature, containing the LateX definition of a function;code
: astring
feature, containing thesympy
definition of a function;label
: astring
feature;domain
: astring
feature orNone
, denoting the domain of a function. This feature is only used for some of the Convexity problems.id
: astring
feature.
Algorithms
Connectivity
image
: a PIL Image featurequery_nodes_color
: astring
featureadjacency_matrix
: astring
feature, a string of an 2d array representing the adjacency matrix of a graphquery_node_1
: aunit32
featurequery_node_2
: aunit32
featurelabel
: abool
feature, with possible values includingTrue
(query nodes connected) andFalse
(query nodes not connected)id
: astring
feature
Maxflow
image
: a PIL Image featuresource_node
: aunit32
feature, denoting the index of the source nodesource_node_color
: astring
feature, denoting the color of thesource_node
rendered in theimage
sink_node
: aunit32
feature, denoting the index of the sink nodesink_node_color
: astring
feature, denoting the color of thesink_node
rendered in theimage
adjacency_matrix
: astring
feature, a string of an 2d array representing the adjacency matrix of a graph. The value in entry (i,j) denotes the capacity of flowing from nodei
to nodej
.label
: auint32
featureid
: astring
feature
Isomorphism
image
: a PIL Image feature, consisting of two graphsG
andH
adjacency_matrix_G
: astring
feature, a string of an 2d array representing the adjacency matrix of graphG
adjacency_matrix_H
: astring
feature, a string of an 2d array representing the adjacency matrix of graphH
label
: abool
feature, with possible values includingTrue
(graphsG
andH
are isomorphic) andFalse
(not isomorphic)id
: astring
feature
Games
[More Information Needed]
Science
[More Information Needed]
Citation
BibTeX:
@inproceedings{fu2024isobench,
title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations},
author={Deqing Fu and Ruohao Guo and Ghazal Khalighinejad and Ollie Liu and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger},
booktitle={First Conference on Language Modeling (COLM)},
year={2024},
note={First four authors contributed equally.}
}
Chicago Style: Deqing Fu*, Ruohao Guo*, Ghazal Khalighinejad*, Ollie Liu*, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024).
Contact
[email protected], [email protected], [email protected], [email protected]