prompt
stringlengths 94
42.6k
| completion
stringlengths 6
120
| api
stringlengths 14
68
|
---|---|---|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x, callback=_save_to(x))
y = | fake_quant_tensor(x, qmin, qmax, q_dict) | megengine.quantization.utils.fake_quant_tensor |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x, callback=_save_to(x))
y = fake_quant_tensor(x, qmin, qmax, q_dict)
grad(y, tensor(F.ones_like(x)))
x1 = | tensor(inp_data, dtype=np.float32) | megengine.tensor |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = | Grad() | megengine.core.autodiff.grad.Grad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x, callback=_save_to(x))
y = fake_quant_tensor(x, qmin, qmax, q_dict)
grad(y, tensor(F.ones_like(x)))
x1 = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x1, callback=_save_to(x1))
y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax)
grad(y1, tensor(F.ones_like(x1)))
assert np.allclose(x.grad.numpy(), x1.grad.numpy())
assert | make_shape_tuple(x.grad.shape) | megengine.core.tensor.utils.make_shape_tuple |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x, callback=_save_to(x))
y = fake_quant_tensor(x, qmin, qmax, q_dict)
grad(y, tensor(F.ones_like(x)))
x1 = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x1, callback=_save_to(x1))
y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax)
grad(y1, tensor(F.ones_like(x1)))
assert np.allclose(x.grad.numpy(), x1.grad.numpy())
assert make_shape_tuple(x.grad.shape) == | make_shape_tuple(x1.grad.shape) | megengine.core.tensor.utils.make_shape_tuple |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = | fake_quant_tensor(inp, qmin, qmax, q_dict) | megengine.quantization.utils.fake_quant_tensor |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = | Grad() | megengine.core.autodiff.grad.Grad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
from megengine import tensor
from megengine.core.autodiff.grad import Function, Grad
from megengine.core.tensor.utils import make_shape_tuple
from megengine.quantization.internal_fake_quant import *
from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward
class TQT_numpy:
def __init__(self, lowerbound, upperbound):
super().__init__()
self.lowerbound = lowerbound
self.upperbound = upperbound
def forward(self, inp, scale):
t = 2 ** scale
# t = F.maximum(t, 1e-4)
inp_scaled = inp / t
inp_clipped = np.maximum(
np.minimum(inp_scaled, self.upperbound), self.lowerbound
)
inp_rounded = np.round(inp_clipped)
inp_flq = inp_rounded * t
self.saved_tensors = (inp_scaled, inp_rounded, t)
return inp_flq
def backward(self, grad_inp_flq):
(inp_scaled, inp_rounded, t) = self.saved_tensors
mask_clip = (inp_scaled < -0.5 + self.lowerbound) + (
inp_scaled > self.upperbound + 0.5
) # mask for accumulating the gradients of |data_scaled|>L
mask_quant = np.abs(
mask_clip - 1
) # mask for accumulating the gradients with |data_scaled|<=L
grad_quant = (
grad_inp_flq * mask_quant * (inp_rounded - inp_scaled)
) # gradient within |data_scaled|<=L
grad_clip = (
grad_inp_flq * mask_clip * inp_rounded
) # gradient with | data_scaled|>L
grad_s = grad_clip.sum() + grad_quant.sum()
# dL/ds = dL/dt * t * ln(2)
grad_s = grad_s * t * np.log(2)
grad_inp = grad_inp_flq * mask_quant
return grad_inp, grad_s
def test_tqt():
g = []
def cb(grad):
g.append(grad)
x = np.random.normal(size=(1, 2, 3, 4))
s = np.random.rand(1) + 1
g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32")
n = TQT_numpy(-127, 127)
y_np = n.forward(x, s)
g_x_np, g_s_np = n.backward(g_y)
x = mge.tensor(x, dtype="float32")
s = mge.tensor(s, dtype="float32")
g_y = mge.tensor(g_y, dtype="float32")
grad = Grad().wrt(x, s, callback=cb)
y = tqt_forward(-127, 127, x, s)
grad(y, g_y)
g_x, g_s = g
np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6)
np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6)
np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6)
def _save_to(self, name="grad"):
def callback(grad):
setattr(self, name, grad)
return callback
class Round(Function):
def forward(self, x):
return F.round(x)
def backward(self, output_grads):
return output_grads
def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax):
oup = Round()(inp / scale) + zero_point
oup = F.minimum(F.maximum(oup, qmin), qmax)
oup = (oup - zero_point) * scale
return oup
def test_fakequant():
qmin = -126
qmax = 129
def run(zero_point, scale):
q_dict = {}
q_dict["mode"] = QuantMode.ASYMMERTIC
q_dict["scale"] = scale
q_dict["zero_point"] = zero_point
inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32))
inp = tensor(inp_data, dtype=np.float32)
# test forward
oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy()
oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy()
assert np.allclose(oup, oup_gt)
assert oup.shape == oup_gt.shape
# test backward
x = tensor(inp_data, dtype=np.float32)
grad = Grad().wrt(x, callback=_save_to(x))
y = fake_quant_tensor(x, qmin, qmax, q_dict)
grad(y, tensor(F.ones_like(x)))
x1 = tensor(inp_data, dtype=np.float32)
grad = | Grad() | megengine.core.autodiff.grad.Grad |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = | F.reshape(x, (n, c, -1, k1 * k2)) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = | F.transpose(x, (0, 1, 3, 2)) | megengine.functional.transpose |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = | F.reshape(x, (n, c * k1 * k2, -1)) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = | F.reshape(mask, (N, 1, 9, rate, rate, H, W)) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = | F.softmax(mask, axis=2) | megengine.functional.softmax |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = | F.reshape(up_flow, (N, 2, 9, 1, 1, H, W)) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = | F.sum(mask * up_flow, axis=2) | megengine.functional.sum |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = | F.transpose(up_flow, (0, 1, 4, 2, 5, 3)) | megengine.functional.transpose |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return | F.reshape(up_flow, (N, 2, rate * H, rate * W)) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = | F.zeros([N, 1, H, W], dtype="float32") | megengine.functional.zeros |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = | F.zeros([N, 1, H, W], dtype="float32") | megengine.functional.zeros |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with | amp.autocast(enabled=self.mixed_precision) | megengine.amp.autocast |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with | amp.autocast(enabled=self.mixed_precision) | megengine.amp.autocast |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = | F.avg_pool2d(fmap1, 2, stride=2) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = | F.avg_pool2d(fmap2, 2, stride=2) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = | F.split(fmap1, [hdim], axis=1) | megengine.functional.split |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = | F.tanh(net) | megengine.functional.tanh |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = | F.relu(inp) | megengine.functional.relu |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = | F.avg_pool2d(net, 2, stride=2) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = | F.avg_pool2d(inp, 2, stride=2) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = | F.avg_pool2d(fmap1, 4, stride=4) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = | F.avg_pool2d(fmap2, 4, stride=4) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = | F.avg_pool2d(net, 4, stride=4) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = | F.avg_pool2d(inp, 4, stride=4) | megengine.functional.avg_pool2d |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = | F.concat([_x, _y], axis=1) | megengine.functional.concat |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
| F.transpose(x_tmp, (0, 2, 3, 1)) | megengine.functional.transpose |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap2_dw16)
fmap2_dw16 = F.reshape(
| F.transpose(x_tmp, (0, 2, 3, 1)) | megengine.functional.transpose |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap2_dw16)
fmap2_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16)
fmap1_dw16, fmap2_dw16 = [
F.transpose(
F.reshape(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2])),
(0, 3, 1, 2),
)
for x in [fmap1_dw16, fmap2_dw16]
]
corr_fn = AGCL(fmap1, fmap2)
corr_fn_dw8 = AGCL(fmap1_dw8, fmap2_dw8)
corr_fn_att_dw16 = AGCL(fmap1_dw16, fmap2_dw16, att=self.cross_att_fn)
# Cascaded refinement (1/16 + 1/8 + 1/4)
predictions = []
flow = None
flow_up = None
if flow_init is not None:
scale = fmap1.shape[2] / flow_init.shape[2]
flow = -scale * F.nn.interpolate(
flow_init,
size=(fmap1.shape[2], fmap1.shape[3]),
mode="bilinear",
align_corners=True,
)
else:
# zero initialization
flow_dw16 = self.zero_init(fmap1_dw16)
# Recurrent Update Module
# RUM: 1/16
for itr in range(iters // 2):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow_dw16 = flow_dw16.detach()
out_corrs = corr_fn_att_dw16(
flow_dw16, offset_dw16, small_patch=small_patch
)
with amp.autocast(enabled=self.mixed_precision):
net_dw16, up_mask, delta_flow = self.update_block(
net_dw16, inp_dw16, out_corrs, flow_dw16
)
flow_dw16 = flow_dw16 + delta_flow
flow = self.convex_upsample(flow_dw16, up_mask, rate=4)
flow_up = -4 * F.nn.interpolate(
flow,
size=(4 * flow.shape[2], 4 * flow.shape[3]),
mode="bilinear",
align_corners=True,
)
predictions.append(flow_up)
scale = fmap1_dw8.shape[2] / flow.shape[2]
flow_dw8 = -scale * F.nn.interpolate(
flow,
size=(fmap1_dw8.shape[2], fmap1_dw8.shape[3]),
mode="bilinear",
align_corners=True,
)
# RUM: 1/8
for itr in range(iters // 2):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow_dw8 = flow_dw8.detach()
out_corrs = corr_fn_dw8(flow_dw8, offset_dw8, small_patch=small_patch)
with amp.autocast(enabled=self.mixed_precision):
net_dw8, up_mask, delta_flow = self.update_block(
net_dw8, inp_dw8, out_corrs, flow_dw8
)
flow_dw8 = flow_dw8 + delta_flow
flow = self.convex_upsample(flow_dw8, up_mask, rate=4)
flow_up = -2 * F.nn.interpolate(
flow,
size=(2 * flow.shape[2], 2 * flow.shape[3]),
mode="bilinear",
align_corners=True,
)
predictions.append(flow_up)
scale = fmap1.shape[2] / flow.shape[2]
flow = -scale * F.nn.interpolate(
flow,
size=(fmap1.shape[2], fmap1.shape[3]),
mode="bilinear",
align_corners=True,
)
# RUM: 1/4
for itr in range(iters):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow = flow.detach()
out_corrs = corr_fn(flow, None, small_patch=small_patch, iter_mode=True)
with | amp.autocast(enabled=self.mixed_precision) | megengine.amp.autocast |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap2_dw16)
fmap2_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16)
fmap1_dw16, fmap2_dw16 = [
F.transpose(
| F.reshape(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2])) | megengine.functional.reshape |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap2_dw16)
fmap2_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16)
fmap1_dw16, fmap2_dw16 = [
F.transpose(
F.reshape(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2])),
(0, 3, 1, 2),
)
for x in [fmap1_dw16, fmap2_dw16]
]
corr_fn = AGCL(fmap1, fmap2)
corr_fn_dw8 = AGCL(fmap1_dw8, fmap2_dw8)
corr_fn_att_dw16 = AGCL(fmap1_dw16, fmap2_dw16, att=self.cross_att_fn)
# Cascaded refinement (1/16 + 1/8 + 1/4)
predictions = []
flow = None
flow_up = None
if flow_init is not None:
scale = fmap1.shape[2] / flow_init.shape[2]
flow = -scale * F.nn.interpolate(
flow_init,
size=(fmap1.shape[2], fmap1.shape[3]),
mode="bilinear",
align_corners=True,
)
else:
# zero initialization
flow_dw16 = self.zero_init(fmap1_dw16)
# Recurrent Update Module
# RUM: 1/16
for itr in range(iters // 2):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow_dw16 = flow_dw16.detach()
out_corrs = corr_fn_att_dw16(
flow_dw16, offset_dw16, small_patch=small_patch
)
with | amp.autocast(enabled=self.mixed_precision) | megengine.amp.autocast |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0
# context
net_dw16 = F.avg_pool2d(net, 4, stride=4)
inp_dw16 = F.avg_pool2d(inp, 4, stride=4)
# positional encoding and self-attention
pos_encoding_fn_small = PositionEncodingSine(
d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16)
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap1_dw16)
fmap1_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
# 'n c h w -> n (h w) c'
x_tmp = pos_encoding_fn_small(fmap2_dw16)
fmap2_dw16 = F.reshape(
F.transpose(x_tmp, (0, 2, 3, 1)),
(x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]),
)
fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16)
fmap1_dw16, fmap2_dw16 = [
F.transpose(
F.reshape(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2])),
(0, 3, 1, 2),
)
for x in [fmap1_dw16, fmap2_dw16]
]
corr_fn = AGCL(fmap1, fmap2)
corr_fn_dw8 = AGCL(fmap1_dw8, fmap2_dw8)
corr_fn_att_dw16 = AGCL(fmap1_dw16, fmap2_dw16, att=self.cross_att_fn)
# Cascaded refinement (1/16 + 1/8 + 1/4)
predictions = []
flow = None
flow_up = None
if flow_init is not None:
scale = fmap1.shape[2] / flow_init.shape[2]
flow = -scale * F.nn.interpolate(
flow_init,
size=(fmap1.shape[2], fmap1.shape[3]),
mode="bilinear",
align_corners=True,
)
else:
# zero initialization
flow_dw16 = self.zero_init(fmap1_dw16)
# Recurrent Update Module
# RUM: 1/16
for itr in range(iters // 2):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow_dw16 = flow_dw16.detach()
out_corrs = corr_fn_att_dw16(
flow_dw16, offset_dw16, small_patch=small_patch
)
with amp.autocast(enabled=self.mixed_precision):
net_dw16, up_mask, delta_flow = self.update_block(
net_dw16, inp_dw16, out_corrs, flow_dw16
)
flow_dw16 = flow_dw16 + delta_flow
flow = self.convex_upsample(flow_dw16, up_mask, rate=4)
flow_up = -4 * F.nn.interpolate(
flow,
size=(4 * flow.shape[2], 4 * flow.shape[3]),
mode="bilinear",
align_corners=True,
)
predictions.append(flow_up)
scale = fmap1_dw8.shape[2] / flow.shape[2]
flow_dw8 = -scale * F.nn.interpolate(
flow,
size=(fmap1_dw8.shape[2], fmap1_dw8.shape[3]),
mode="bilinear",
align_corners=True,
)
# RUM: 1/8
for itr in range(iters // 2):
if itr % 2 == 0:
small_patch = False
else:
small_patch = True
flow_dw8 = flow_dw8.detach()
out_corrs = corr_fn_dw8(flow_dw8, offset_dw8, small_patch=small_patch)
with | amp.autocast(enabled=self.mixed_precision) | megengine.amp.autocast |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * ( | F.sigmoid(offset_dw8) | megengine.functional.sigmoid |
import megengine.module as M
import megengine.functional as F
from megengine import amp
from .update import BasicUpdateBlock
from .extractor import BasicEncoder
from .corr import AGCL
from .attention import PositionEncodingSine, LocalFeatureTransformer
class CREStereo(M.Module):
def __init__(self, max_disp=192, mixed_precision=False, test_mode=False):
super(CREStereo, self).__init__()
self.max_flow = max_disp
self.mixed_precision = mixed_precision
self.test_mode = test_mode
self.hidden_dim = 128
self.context_dim = 128
self.dropout = 0
# feature network and update block
self.fnet = BasicEncoder(
output_dim=256, norm_fn="instance", dropout=self.dropout
)
self.update_block = BasicUpdateBlock(
hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4
)
# loftr
self.self_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear"
)
self.cross_att_fn = LocalFeatureTransformer(
d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear"
)
# adaptive search
self.search_num = 9
self.conv_offset_16 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.conv_offset_8 = M.Conv2d(
256, self.search_num * 2, kernel_size=3, stride=1, padding=1
)
self.range_16 = 1
self.range_8 = 1
def freeze_bn(self):
for m in self.modules():
if isinstance(m, M.BatchNorm2d):
m.eval()
def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1):
n, c, h, w = x.shape
if isinstance(kernel_size, tuple) or isinstance(kernel_size, list):
assert len(kernel_size) == 2
k1, k2 = kernel_size
else:
assert isinstance(kernel_size, int)
k1 = k2 = kernel_size
x = F.sliding_window(
x,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride,
)
x = F.reshape(x, (n, c, -1, k1 * k2))
x = F.transpose(x, (0, 1, 3, 2))
x = F.reshape(x, (n, c * k1 * k2, -1))
return x
def convex_upsample(self, flow, mask, rate=4):
"""[H/rate, W/rate, 2] -> [H, W, 2]"""
N, _, H, W = flow.shape
mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W))
mask = F.softmax(mask, axis=2)
up_flow = self.unfold(rate * flow, [3, 3], padding=1)
up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W))
up_flow = F.sum(mask * up_flow, axis=2)
up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3))
return F.reshape(up_flow, (N, 2, rate * H, rate * W))
def zero_init(self, fmap):
N, C, H, W = fmap.shape
_x = F.zeros([N, 1, H, W], dtype="float32")
_y = F.zeros([N, 1, H, W], dtype="float32")
zero_flow = F.concat([_x, _y], axis=1).to(fmap.device)
return zero_flow
def forward(self, image1, image2, iters=10, flow_init=None):
image1 = 2 * (image1 / 255.0) - 1.0
image2 = 2 * (image2 / 255.0) - 1.0
hdim = self.hidden_dim
cdim = self.context_dim
# feature network
with amp.autocast(enabled=self.mixed_precision):
fmap1, fmap2 = self.fnet([image1, image2])
fmap1 = fmap1.astype("float32")
fmap2 = fmap2.astype("float32")
with amp.autocast(enabled=self.mixed_precision):
# 1/4 -> 1/8
# feature
fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2)
fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2)
# offset
offset_dw8 = self.conv_offset_8(fmap1_dw8)
offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0
# context
net, inp = F.split(fmap1, [hdim], axis=1)
net = F.tanh(net)
inp = F.relu(inp)
net_dw8 = F.avg_pool2d(net, 2, stride=2)
inp_dw8 = F.avg_pool2d(inp, 2, stride=2)
# 1/4 -> 1/16
# feature
fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4)
fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4)
offset_dw16 = self.conv_offset_16(fmap1_dw16)
offset_dw16 = self.range_16 * ( | F.sigmoid(offset_dw16) | megengine.functional.sigmoid |
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# pylint: disable=import-error,no-name-in-module,no-member
from typing import List, Union
import megengine as mge
from megengine.traced_module import TracedModule
from ..backend.ir_to_caffe.caffe_converter import BackEnd, CaffeConverter
from ..converter_ir.ir_quantizer import IRQuantizer
from ..converter_ir.ir_transform import IRTransform, TransformerRule
from ..frontend.tm_to_ir import TM_FrontEnd
from ..frontend.tm_to_ir.tm_utils import _update_inputs_qparams
def tracedmodule_to_caffe(
traced_module,
prototxt="out.prototxt",
caffemodel="out.caffemodel",
outspec=None,
use_empty_blobs=False,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
split_conv_relu=False,
quantize_file_path="quant_params.json",
convert_backend: BackEnd = BackEnd.CAFFE,
):
"""
Convert TracedModule model to Caffe,
and save caffe model to `prototxt` and `caffemodel`.
:param traced_module: the file path of TracedModule model.
:type traced_module: str
:param prototxt: the filename used for saved model definition.
:type prototxt: str
:param caffemodel: the filename used for saved model weights.
:type caffemodel: str
:param outspec: specify the end points of the model, expect the full names of nodes.
:type outspec: list
"""
if isinstance(traced_module, str):
traced_module = | mge.load(traced_module) | megengine.load |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = | M.BatchNorm2d(self.in_channels) | megengine.module.BatchNorm2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = | M.BatchNorm2d(self.hidden_channels) | megengine.module.BatchNorm2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = | M.ReLU() | megengine.module.ReLU |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = | M.ReLU() | megengine.module.ReLU |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = | M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1) | megengine.module.Conv2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = | M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) | megengine.module.Conv2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1)
self.c_sc = | M.Conv2d(self.in_channels, self.out_channels, 1, 1, 0) | megengine.module.Conv2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1)
self.c_sc = M.Conv2d(self.in_channels, self.out_channels, 1, 1, 0)
self.activation = | M.ReLU() | megengine.module.ReLU |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1)
self.c_sc = M.Conv2d(self.in_channels, self.out_channels, 1, 1, 0)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
| M.init.xavier_uniform_(self.c_sc.weight, 1.0) | megengine.module.init.xavier_uniform_ |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1)
self.c_sc = M.Conv2d(self.in_channels, self.out_channels, 1, 1, 0)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
h = | F.avg_pool2d(h, 2) | megengine.functional.avg_pool2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
| M.init.xavier_uniform_(self.c_sc.weight, 1.0) | megengine.module.init.xavier_uniform_ |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = | M.Conv2d(in_channels, out_channels, 1, 1, 0) | megengine.module.Conv2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
| M.init.xavier_uniform_(self.c_sc.weight, 1.0) | megengine.module.init.xavier_uniform_ |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = | F.avg_pool2d(h, 2) | megengine.functional.avg_pool2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut(F.relu(x))
class DBlockOptimized(M.Module):
"""
Optimized residual block for discriminator. This is used as the first residual block,
where there is a definite downsampling involved. Follows the official SNGAN reference implementation
in chainer.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self, in_channels, out_channels, spectral_norm=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spectral_norm = spectral_norm
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.out_channels, 3, 1, 1)
self.c2 = M.Conv2d(self.out_channels, self.out_channels, 3, 1, 1)
self.c_sc = M.Conv2d(self.in_channels, self.out_channels, 1, 1, 0)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
return self.c_sc( | F.avg_pool2d(x, 2) | megengine.functional.avg_pool2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return | F.avg_pool2d(x, 2) | megengine.functional.avg_pool2d |
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import math
import megengine.functional as F
import megengine.module as M
class GBlock(M.Module):
r"""
Residual block for generator.
Uses bilinear (rather than nearest) interpolation, and align_corners
set to False. This is as per how torchvision does upsampling, as seen in:
https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/_utils.py
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
upsample (bool): If True, upsamples the input feature map.
num_classes (int): If more than 0, uses conditional batch norm instead.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
upsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else out_channels
self.learnable_sc = in_channels != out_channels or upsample
self.upsample = upsample
self.c1 = M.Conv2d(self.in_channels,
self.hidden_channels,
3,
1,
padding=1)
self.c2 = M.Conv2d(self.hidden_channels,
self.out_channels,
3,
1,
padding=1)
self.b1 = M.BatchNorm2d(self.in_channels)
self.b2 = M.BatchNorm2d(self.hidden_channels)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels,
out_channels,
1,
1,
padding=0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _upsample_conv(self, x, conv):
r"""
Helper function for performing convolution after upsampling.
"""
return conv(
F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=False))
def _residual(self, x):
r"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.b1(h)
h = self.activation(h)
h = self._upsample_conv(h, self.c1) if self.upsample else self.c1(h)
h = self.b2(h)
h = self.activation(h)
h = self.c2(h)
return h
def _shortcut(self, x):
r"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self._upsample_conv(
x, self.c_sc) if self.upsample else self.c_sc(x)
return x
else:
return x
def forward(self, x):
r"""
Residual block feedforward function.
"""
return self._residual(x) + self._shortcut(x)
class DBlock(M.Module):
"""
Residual block for discriminator.
Attributes:
in_channels (int): The channel size of input feature map.
out_channels (int): The channel size of output feature map.
hidden_channels (int): The channel size of intermediate feature maps.
downsample (bool): If True, downsamples the input feature map.
spectral_norm (bool): If True, uses spectral norm for convolutional layers.
"""
def __init__(self,
in_channels,
out_channels,
hidden_channels=None,
downsample=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels if hidden_channels is not None else in_channels
self.downsample = downsample
self.learnable_sc = (in_channels != out_channels) or downsample
# Build the layers
self.c1 = M.Conv2d(self.in_channels, self.hidden_channels, 3, 1,
1)
self.c2 = M.Conv2d(self.hidden_channels, self.out_channels, 3, 1,
1)
self.activation = M.ReLU()
M.init.xavier_uniform_(self.c1.weight, math.sqrt(2.0))
M.init.xavier_uniform_(self.c2.weight, math.sqrt(2.0))
# Shortcut layer
if self.learnable_sc:
self.c_sc = M.Conv2d(in_channels, out_channels, 1, 1, 0)
M.init.xavier_uniform_(self.c_sc.weight, 1.0)
def _residual(self, x):
"""
Helper function for feedforwarding through main layers.
"""
h = x
h = self.activation(h)
h = self.c1(h)
h = self.activation(h)
h = self.c2(h)
if self.downsample:
h = F.avg_pool2d(h, 2)
return h
def _shortcut(self, x):
"""
Helper function for feedforwarding through shortcut layers.
"""
if self.learnable_sc:
x = self.c_sc(x)
return F.avg_pool2d(x, 2) if self.downsample else x
else:
return x
def forward(self, x):
"""
Residual block feedforward function.
"""
# NOTE: to completely reproduce pytorch, we use F.relu(x) to replace x in shortcut
# since pytorch use inplace relu in residual branch.
return self._residual(x) + self._shortcut( | F.relu(x) | megengine.functional.relu |
#!/usr/bin/env python
# -*-coding=utf-8-*-
from megengine.logger import get_logger
logger = | get_logger(__name__) | megengine.logger.get_logger |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if | dist.is_distributed() | megengine.distributed.is_distributed |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if | dist.is_distributed() | megengine.distributed.is_distributed |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = | dist.all_reduce_sum(loss) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = | dist.all_reduce_sum(acc1) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = | dist.all_reduce_sum(acc5) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = | dist.all_reduce_sum(loss) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = | dist.all_reduce_sum(acc1) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = | dist.all_reduce_sum(acc5) | megengine.distributed.all_reduce_sum |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / | dist.get_world_size() | megengine.distributed.get_world_size |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2019 Megvii Technology
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import argparse
import multiprocessing as mp
import os
import time
import sys
import logging
import megengine.distributed as dist
import torch
import torch.optim as optim
import torch.nn.functional as F
import datasets
import torchvision.transforms as transforms
import shufflenet_v2_pytorch as M
from tensorboardX import SummaryWriter
from devkit.core import (init_dist, broadcast_params, average_gradients, load_state_ckpt, load_state, save_checkpoint, LRScheduler, CrossEntropyLoss)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str)
parser.add_argument("-d", "--data", default=None, type=str)
parser.add_argument("-s", "--save", default="./models", type=str)
parser.add_argument("-m", "--model", default=None, type=str)
parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard')
parser.add_argument("-b", "--batch-size", default=128, type=int)
parser.add_argument("--learning-rate", default=0.0625, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight-decay", default=4e-5, type=float)
parser.add_argument("--steps", default=300000, type=int)
parser.add_argument("-n", "--ngpus", default=None, type=int)
parser.add_argument("-w", "--workers", default=4, type=int)
parser.add_argument("--report-freq", default=50, type=int)
parser.add_argument(
'--port', default=29500, type=int, help='port of server')
args = parser.parse_args()
rank, world_size = init_dist(
backend='nccl', port=args.port)
if not os.path.exists(args.output):
os.makedirs(args.output)
if world_size > 1:
# scale learning rate by number of gpus
args.learning_rate *= world_size
# start distributed training, dispatch sub-processes
mp.set_start_method("spawn")
processes = []
for rank in range(world_size):
p = mp.Process(target=worker, args=(rank, world_size, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
worker(0, 1, args)
def get_parameters(model):
group_no_weight_decay = []
group_weight_decay = []
for pname, p in model.named_parameters():
if p.requires_grad:
if pname.find("weight") >= 0 and len(p.shape) > 1:
# print("include ", pname, p.shape)
group_weight_decay.append(p)
else:
# print("not include ", pname, p.shape)
group_no_weight_decay.append(p)
assert len(list(model.parameters())) == len(group_weight_decay) + len(
group_no_weight_decay
)
groups = [
dict(params=group_weight_decay),
dict(params=group_no_weight_decay, weight_decay=0.0),
]
return groups
def worker(rank, world_size, args):
# pylint: disable=too-many-statements
if rank == 0:
save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if world_size > 1:
# Initialize distributed process group
logging.info("init distributed process group {} / {}".format(rank, world_size))
dist.init_process_group(
master_ip="localhost",
master_port=23456,
world_size=world_size,
rank=rank,
dev=rank,
)
save_dir = os.path.join(args.save, args.arch)
if rank == 0:
prefixs=['train', 'valid']
writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs}
model = getattr(M, args.arch)()
step_start = 0
# if args.model:
# logging.info("load weights from %s", args.model)
# model.load_state_dict(mge.load(args.model))
# step_start = int(args.model.split("-")[1].split(".")[0])
optimizer = optim.SGD(
get_parameters(model),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
# Define train and valid graph
def train_func(image, label):
model.train()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
optimizer.backward(loss) # compute gradients
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
def valid_func(image, label):
model.eval()
logits = model(image)
loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1)
acc1, acc5 = F.accuracy(logits, label, (1, 5))
if dist.is_distributed(): # all_reduce_mean
loss = dist.all_reduce_sum(loss) / dist.get_world_size()
acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size()
acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size()
return loss, acc1, acc5
# Build train and valid datasets
logging.info("preparing dataset..")
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageNet(split='train', transform=transform)
train_sampler = torch.utils.data.RandomSampler(train_dataset)
train_queue = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
sampler=train_sampler,
shuffle=False,
drop_last=True,
pin_memory=True,
num_workers=args.workers
)
train_queue = iter(train_queue)
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
valid_dataset = datasets.ImageNet(split='val', transform=transform)
valid_sampler = torch.utils.data.SequentialSampler(valid_dataset)
valid_queue = torch.utils.data.DataLoader(
valid_dataset,
batch_size=100,
sampler=valid_sampler,
shuffle=False,
drop_last=False,
num_workers=args.workers
)
# Start training
objs = AverageMeter("Loss")
top1 = AverageMeter("Acc@1")
top5 = AverageMeter("Acc@5")
total_time = AverageMeter("Time")
t = time.time()
best_valid_acc = 0
for step in range(step_start, args.steps + 1):
# Linear learning rate decay
decay = 1.0
decay = 1 - float(step) / args.steps if step < args.steps else 0
for param_group in optimizer.param_groups:
param_group["lr"] = args.learning_rate * decay
image, label = next(train_queue)
time_data=time.time()-t
# image = image.astype("float32")
# label = label.astype("int32")
n = image.shape[0]
optimizer.zero_grad()
loss, acc1, acc5 = train_func(image, label)
optimizer.step()
top1.update(100 * acc1.numpy()[0], n)
top5.update(100 * acc5.numpy()[0], n)
objs.update(loss.numpy()[0], n)
total_time.update(time.time() - t)
time_iter=time.time()-t
t = time.time()
if step % args.report_freq == 0 and rank == 0:
logging.info(
"TRAIN Iter %06d: lr = %f,\tloss = %f,\twc_loss = 1,\tTop-1 err = %f,\tTop-5 err = %f,\tdata_time = %f,\ttrain_time = %f,\tremain_hours=%f",
step,
args.learning_rate * decay,
float(objs.__str__().split()[1]),
1-float(top1.__str__().split()[1])/100,
1-float(top5.__str__().split()[1])/100,
time_data,
time_iter - time_data,
time_iter * (args.steps - step) / 3600,
)
writers['train'].add_scalar('loss', float(objs.__str__().split()[1]), global_step=step)
writers['train'].add_scalar('top1_err', 1-float(top1.__str__().split()[1])/100, global_step=step)
writers['train'].add_scalar('top5_err', 1-float(top5.__str__().split()[1])/100, global_step=step)
objs.reset()
top1.reset()
top5.reset()
total_time.reset()
if step % 10000 == 0 and step != 0:
loss, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args)
logging.info("TEST Iter %06d: loss = %f,\tTop-1 err = %f,\tTop-5 err = %f", step, loss, 1-valid_acc/100, 1-valid_acc5/100)
is_best = valid_acc > best_valid_acc
best_valid_acc = max(valid_acc, best_valid_acc)
if rank == 0:
writers['valid'].add_scalar('loss', loss, global_step=step)
writers['valid'].add_scalar('top1_err', 1-valid_acc/100, global_step=step)
writers['valid'].add_scalar('top5_err', 1-valid_acc5/100, global_step=step)
logging.info("SAVING %06d", step)
save_checkpoint(save_dir, {
'step': step + 1,
'model': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_valid_acc,
'optimizer': optimizer.state_dict(),
}, is_best)
def infer(model, data_queue, args):
objs = AverageMeter("Loss")
top1 = AverageMeter("Acc@1")
top5 = AverageMeter("Acc@5")
total_time = AverageMeter("Time")
t = time.time()
for step, (image, label) in enumerate(data_queue):
n = image.shape[0]
image = image.astype("float32") # convert np.uint8 to float32
label = label.astype("int32")
loss, acc1, acc5 = model(image, label)
objs.update(loss.numpy()[0], n)
top1.update(100 * acc1.numpy()[0], n)
top5.update(100 * acc5.numpy()[0], n)
total_time.update(time.time() - t)
t = time.time()
if step % args.report_freq == 0 and | dist.get_rank() | megengine.distributed.get_rank |
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# pylint: disable=import-error,no-name-in-module,no-member
from typing import List, Union
import megengine as mge
from megengine.traced_module import TracedModule
from ..backend.ir_to_onnx.onnx_converter import OnnxConverter
from ..converter_ir.ir_quantizer import IRQuantizer
from ..converter_ir.ir_transform import IRTransform, TransformerRule
from ..frontend.tm_to_ir import TM_FrontEnd
from ..frontend.tm_to_ir.tm_utils import _update_inputs_qparams
def tracedmodule_to_onnx(
traced_module,
output="out.onnx",
*,
graph_name="graph",
opset=8,
outspec=None,
input_data_type: str = None,
input_scales: Union[float, List[float]] = None,
input_zero_points: Union[int, List[int]] = None,
require_quantize=False,
param_fake_quant=False,
quantize_file_path="quant_params.json",
):
"""
Convert megengine model to ONNX,
and save the ONNX model to file `output`.
:param mge_fpath: the file path of megengine model.
:type fpath: str
:param output: the filename used for the saved model.
:type output: str
:param graph_name: the name of the ONNX graph.
:type graph_name: str
:param opset: opset version of ONNX model.
:type opset: int
"""
if isinstance(traced_module, str):
traced_module = | mge.load(traced_module) | megengine.load |
import numpy as np
from megengine import tensor
def _default_compare_fn(x, y):
np.testing.assert_allclose(x.numpy(), y, rtol=1e-6)
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
"""
:param cases: the list which have dict element, the list length should be 2 for dynamic shape test.
and the dict should have input,
and should have output if ref_fn is None.
should use list for multiple inputs and outputs for each case.
:param func: the function to run opr.
:param compare_fn: the function to compare the result and expected, use
``np.testing.assert_allclose`` if None.
:param ref_fn: the function to generate expected data, should assign output if None.
Examples:
.. code-block::
dtype = np.float32
cases = [{"input": [10, 20]}, {"input": [20, 30]}]
opr_test(cases,
F.eye,
ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
dtype=dtype)
"""
def check_results(results, expected):
if not isinstance(results, (tuple, list)):
results = (results,)
for r, e in zip(results, expected):
compare_fn(r, e)
def get_param(cases, idx):
case = cases[idx]
inp = case.get("input", None)
outp = case.get("output", None)
if inp is None:
raise ValueError("the test case should have input")
if not isinstance(inp, (tuple, list)):
inp = (inp,)
if ref_fn is not None and callable(ref_fn):
outp = ref_fn(*inp)
if outp is None:
raise ValueError("the test case should have output or reference function")
if not isinstance(outp, (tuple, list)):
outp = (outp,)
return inp, outp
if len(cases) == 0:
raise ValueError("should give one case at least")
if not callable(func):
raise ValueError("the input func should be callable")
inp, outp = get_param(cases, 0)
inp_tensor = [ | tensor(inpi) | megengine.tensor |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = | quantize_qat(module, inplace=False) | megengine.quantization.quantize.quantize_qat |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = quantize_qat(module, inplace=False)
| disable_fake_quant(qat_module) | megengine.quantization.quantize.disable_fake_quant |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = quantize_qat(module, inplace=False)
disable_fake_quant(qat_module)
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
normal_outputs = module(inputs)
# import pdb
# pdb.set_trace()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
np.testing.assert_allclose(
module.bn.running_mean.numpy(),
qat_module.bn.running_mean.numpy(),
atol=5e-8,
)
np.testing.assert_allclose(
module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
)
module.eval()
normal_outputs = module(inputs)
qat_module.eval()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
def test_qat_conv():
in_channels = 32
out_channels = 64
kernel_size = 3
class TestNet(Module):
def __init__(self, groups, bias):
super().__init__()
self.quant = QuantStub()
self.dequant = DequantStub()
self.conv = Conv2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
self.conv_relu = ConvRelu2d(
out_channels, in_channels, kernel_size, groups=groups, bias=bias
)
def forward(self, inp):
out = self.quant(inp)
out = self.conv(out)
out = self.conv_relu(out)
out = self.dequant(out)
return out
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
for groups, bias in product([1, 4], [True, False]):
net = TestNet(groups, bias)
net.train()
qat_net = | quantize_qat(net, inplace=False) | megengine.quantization.quantize.quantize_qat |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = quantize_qat(module, inplace=False)
disable_fake_quant(qat_module)
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
normal_outputs = module(inputs)
# import pdb
# pdb.set_trace()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
np.testing.assert_allclose(
module.bn.running_mean.numpy(),
qat_module.bn.running_mean.numpy(),
atol=5e-8,
)
np.testing.assert_allclose(
module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
)
module.eval()
normal_outputs = module(inputs)
qat_module.eval()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
def test_qat_conv():
in_channels = 32
out_channels = 64
kernel_size = 3
class TestNet(Module):
def __init__(self, groups, bias):
super().__init__()
self.quant = QuantStub()
self.dequant = DequantStub()
self.conv = Conv2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
self.conv_relu = ConvRelu2d(
out_channels, in_channels, kernel_size, groups=groups, bias=bias
)
def forward(self, inp):
out = self.quant(inp)
out = self.conv(out)
out = self.conv_relu(out)
out = self.dequant(out)
return out
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
for groups, bias in product([1, 4], [True, False]):
net = TestNet(groups, bias)
net.train()
qat_net = quantize_qat(net, inplace=False)
| disable_fake_quant(qat_net) | megengine.quantization.quantize.disable_fake_quant |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = quantize_qat(module, inplace=False)
disable_fake_quant(qat_module)
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
normal_outputs = module(inputs)
# import pdb
# pdb.set_trace()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
np.testing.assert_allclose(
module.bn.running_mean.numpy(),
qat_module.bn.running_mean.numpy(),
atol=5e-8,
)
np.testing.assert_allclose(
module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
)
module.eval()
normal_outputs = module(inputs)
qat_module.eval()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
def test_qat_conv():
in_channels = 32
out_channels = 64
kernel_size = 3
class TestNet(Module):
def __init__(self, groups, bias):
super().__init__()
self.quant = | QuantStub() | megengine.module.QuantStub |
from itertools import product
import numpy as np
from megengine import tensor
from megengine.module import (
Conv2d,
ConvBn2d,
ConvRelu2d,
DequantStub,
Module,
QuantStub,
)
from megengine.quantization.quantize import disable_fake_quant, quantize_qat
def test_qat_convbn2d():
in_channels = 32
out_channels = 64
kernel_size = 3
for groups, bias in product([1, 4], [True, False]):
module = ConvBn2d(
in_channels, out_channels, kernel_size, groups=groups, bias=bias
)
module.train()
qat_module = quantize_qat(module, inplace=False)
disable_fake_quant(qat_module)
inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
normal_outputs = module(inputs)
# import pdb
# pdb.set_trace()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
np.testing.assert_allclose(
module.bn.running_mean.numpy(),
qat_module.bn.running_mean.numpy(),
atol=5e-8,
)
np.testing.assert_allclose(
module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
)
module.eval()
normal_outputs = module(inputs)
qat_module.eval()
qat_outputs = qat_module(inputs)
np.testing.assert_allclose(
normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
)
def test_qat_conv():
in_channels = 32
out_channels = 64
kernel_size = 3
class TestNet(Module):
def __init__(self, groups, bias):
super().__init__()
self.quant = QuantStub()
self.dequant = | DequantStub() | megengine.module.DequantStub |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = | tensor(lr) | megengine.tensor |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = | tensor(weight_decay) | megengine.tensor |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = tensor(weight_decay)
_momentum = | tensor(momentum) | megengine.tensor |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = tensor(weight_decay)
_momentum = tensor(momentum)
c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0))
def norm(vec):
return F.sum(vec * vec) ** c05
inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
if inplace_mode:
_neg_lr = | tensor(-lr) | megengine.tensor |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = tensor(weight_decay)
_momentum = tensor(momentum)
c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0))
def norm(vec):
return | F.sum(vec * vec) | megengine.functional.sum |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = tensor(weight_decay)
_momentum = tensor(momentum)
c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0))
def norm(vec):
return F.sum(vec * vec) ** c05
inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
if inplace_mode:
_neg_lr = tensor(-lr)
for param in param_group["params"]:
if param.grad is None:
continue
grad = param.grad
if weight_decay != 0.0:
grad = grad + param * _weight_decay
p_norm = norm(param.flatten())
if inplace_mode:
if momentum != 0.0:
v = self._state[param]["momentum_buffer"]
_inplace_add_(v, grad, alpha=_momentum, beta=c1)
if self.nesterov:
grad = grad + v * _momentum
else:
grad = v
d_norm = norm(grad.flatten())
trust_ratio = (
p_norm / d_norm
if (self.always_adapt or weight_decay > 0) and p_norm > c0 and d_norm > c0
else c1
)
| _inplace_add_(param, grad, alpha=c1, beta=_neg_lr * trust_ratio) | megengine.functional.inplace._inplace_add_ |
#!/usr/bin/env python3
# Copyright (c) 2020 <NAME>
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LARS optimizer
References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py
"""
import os
from typing import Iterable, Union
import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements LARS algorithm.
LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes"
<https://arxiv.org/abs/1904.00962>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups.
lr: learning rate.
momentum: momentum factor. Default: ``0.0``
nesterov: enables Nesterov momentum. Default: ``False``
weight_decay: weight decay (L2 penalty). Default: ``0.0``
always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False``
"""
def __init__(
self,
params: Union[Iterable[Parameter], dict],
lr: float,
momentum: float = 0.0,
nesterov: bool = False,
weight_decay: float = 0.0,
always_adapt: bool = False,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if nesterov and momentum <= 0:
raise ValueError("Nesterov momentum requires a momentum")
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
super().__init__(params, defaults)
self.nesterov = nesterov
self.always_adapt = always_adapt
self._disable_type_convert = True
def _create_state(self, param_group):
if param_group["momentum"] != 0.0:
for param in param_group["params"]:
self._add_state(param, "momentum_buffer")
def _updates(self, param_group):
lr = param_group["lr"]
weight_decay = param_group["weight_decay"]
momentum = param_group["momentum"]
# since `conver_inputs` is disabled for param updates,
# scalar should be explicitly tansforred to tensor
_lr = tensor(lr)
_weight_decay = tensor(weight_decay)
_momentum = tensor(momentum)
c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0))
def norm(vec):
return F.sum(vec * vec) ** c05
inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
if inplace_mode:
_neg_lr = tensor(-lr)
for param in param_group["params"]:
if param.grad is None:
continue
grad = param.grad
if weight_decay != 0.0:
grad = grad + param * _weight_decay
p_norm = norm(param.flatten())
if inplace_mode:
if momentum != 0.0:
v = self._state[param]["momentum_buffer"]
| _inplace_add_(v, grad, alpha=_momentum, beta=c1) | megengine.functional.inplace._inplace_add_ |
import os
import megengine as mge
import megengine.functional as F
import argparse
import numpy as np
import cv2
from nets import Model
def load_model(model_path):
print("Loading model:", os.path.abspath(model_path))
pretrained_dict = | mge.load(model_path) | megengine.load |
import os
import megengine as mge
import megengine.functional as F
import argparse
import numpy as np
import cv2
from nets import Model
def load_model(model_path):
print("Loading model:", os.path.abspath(model_path))
pretrained_dict = mge.load(model_path)
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
model.eval()
return model
def inference(left, right, model, n_iter=20):
print("Model Forwarding...")
imgL = left.transpose(2, 0, 1)
imgR = right.transpose(2, 0, 1)
imgL = np.ascontiguousarray(imgL[None, :, :, :])
imgR = np.ascontiguousarray(imgR[None, :, :, :])
imgL = | mge.tensor(imgL) | megengine.tensor |
import os
import megengine as mge
import megengine.functional as F
import argparse
import numpy as np
import cv2
from nets import Model
def load_model(model_path):
print("Loading model:", os.path.abspath(model_path))
pretrained_dict = mge.load(model_path)
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
model.eval()
return model
def inference(left, right, model, n_iter=20):
print("Model Forwarding...")
imgL = left.transpose(2, 0, 1)
imgR = right.transpose(2, 0, 1)
imgL = np.ascontiguousarray(imgL[None, :, :, :])
imgR = np.ascontiguousarray(imgR[None, :, :, :])
imgL = mge.tensor(imgL).astype("float32")
imgR = | mge.tensor(imgR) | megengine.tensor |
import os
import megengine as mge
import megengine.functional as F
import argparse
import numpy as np
import cv2
from nets import Model
def load_model(model_path):
print("Loading model:", os.path.abspath(model_path))
pretrained_dict = mge.load(model_path)
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
model.eval()
return model
def inference(left, right, model, n_iter=20):
print("Model Forwarding...")
imgL = left.transpose(2, 0, 1)
imgR = right.transpose(2, 0, 1)
imgL = np.ascontiguousarray(imgL[None, :, :, :])
imgR = np.ascontiguousarray(imgR[None, :, :, :])
imgL = mge.tensor(imgL).astype("float32")
imgR = mge.tensor(imgR).astype("float32")
imgL_dw2 = F.nn.interpolate(
imgL,
size=(imgL.shape[2] // 2, imgL.shape[3] // 2),
mode="bilinear",
align_corners=True,
)
imgR_dw2 = F.nn.interpolate(
imgR,
size=(imgL.shape[2] // 2, imgL.shape[3] // 2),
mode="bilinear",
align_corners=True,
)
pred_flow_dw2 = model(imgL_dw2, imgR_dw2, iters=n_iter, flow_init=None)
pred_flow = model(imgL, imgR, iters=n_iter, flow_init=pred_flow_dw2)
pred_disp = | F.squeeze(pred_flow[:, 0, :, :]) | megengine.functional.squeeze |
import os
import cv2
import argparse
import warnings
import megengine as mge
import megengine.functional as F
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--img', dest='img', nargs=2, required=True)
parser.add_argument('--exp', default=4, type=int)
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
args = parser.parse_args()
from model.RIFE import Model
model = Model()
model.load_model(args.modelDir, -1)
print("Loaded model")
model.eval()
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)), 0)
img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)), 0)
else:
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)) / 255. , 0)
img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)) / 255. , 0)
n, c, h, w = img0.shape
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w))
img0 = | F.nn.pad(img0, padding) | megengine.functional.nn.pad |
import os
import cv2
import argparse
import warnings
import megengine as mge
import megengine.functional as F
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--img', dest='img', nargs=2, required=True)
parser.add_argument('--exp', default=4, type=int)
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
args = parser.parse_args()
from model.RIFE import Model
model = Model()
model.load_model(args.modelDir, -1)
print("Loaded model")
model.eval()
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)), 0)
img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)), 0)
else:
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)) / 255. , 0)
img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)) / 255. , 0)
n, c, h, w = img0.shape
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w))
img0 = F.nn.pad(img0, padding)
img1 = | F.nn.pad(img1, padding) | megengine.functional.nn.pad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import megengine.module as M
import math
import official.vision.classification.resnet.model as resnet
import numpy as np
class ResnetBody(M.Module):
def __init__(
self,
block,
init_channel,
layers,
channels,
zero_init_residual=False,
norm=M.BatchNorm2d,
):
super(ResnetBody, self).__init__()
self.in_channels = init_channel
self.layer1 = self._make_layer(
block, channels[0], layers[0], stride=1, norm=norm
)
self.layer2 = self._make_layer(
block, channels[1], layers[1], stride=2, norm=norm
)
self.layer3 = self._make_layer(
block, channels[2], layers[2], stride=2, norm=norm,
)
self.layer4 = self._make_layer(
block, channels[3], layers[3], stride=2, norm=norm,
)
for m in self.modules():
if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
elif isinstance(m, M.BatchNorm2d):
M.init.ones_(m.weight)
M.init.zeros_(m.bias)
elif isinstance(m, M.Linear):
M.init.msra_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
def _make_layer(self, block, channels, blocks, stride=1, norm=M.BatchNorm2d):
layers = []
layers.append(block(self.in_channels, channels, stride, norm=norm))
self.in_channels = channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, channels, norm=norm))
return M.Sequential(*layers)
def forward(self, x):
outputs = []
x = self.layer1(x)
outputs.append(x)
x = self.layer2(x)
outputs.append(x)
x = self.layer3(x)
outputs.append(x)
x = self.layer4(x)
outputs.append(x)
return outputs
class SingleStage(M.Module):
def __init__(
self, block, init_channel, layers, channels, mid_channel, norm=M.BatchNorm2d
):
super(SingleStage, self).__init__()
self.down = ResnetBody(block, init_channel, layers, channels, norm)
channel = block.expansion * channels[-1]
self.up1 = M.Sequential(
M.Conv2d(channel, mid_channel, 1, 1, 0), norm(mid_channel)
)
self.deconv1 = M.Sequential(
M.ConvTranspose2d(mid_channel, mid_channel, 4, 2, 1), norm(mid_channel)
)
channel = block.expansion * channels[-2]
self.up2 = M.Sequential(
M.Conv2d(channel, mid_channel, 1, 1, 0), norm(mid_channel)
)
self.deconv2 = M.Sequential(
M.ConvTranspose2d(mid_channel, mid_channel, 4, 2, 1), norm(mid_channel)
)
channel = block.expansion * channels[-3]
self.up3 = M.Sequential(
M.Conv2d(channel, mid_channel, 1, 1, 0), norm(mid_channel)
)
self.deconv3 = M.Sequential(
M.ConvTranspose2d(mid_channel, mid_channel, 4, 2, 1), norm(mid_channel)
)
channel = block.expansion * channels[-4]
self.up4 = M.Sequential(
M.Conv2d(channel, mid_channel, 1, 1, 0), norm(mid_channel)
)
def forward(self, x):
branches = self.down(x)
branches = list(reversed(branches))
outputs = []
f_up = F.relu(self.up1(branches[0]))
outputs.append(f_up)
f = self.up2(branches[1])
f_up = F.relu(self.deconv1(f_up) + f)
outputs.append(f_up)
f = self.up3(branches[2])
f_up = F.relu(self.deconv2(f_up) + f)
outputs.append(f_up)
f = self.up4(branches[3])
f_up = F.relu(self.deconv3(f_up) + f)
outputs.append(f_up)
return outputs
class MSPN(M.Module):
def __init__(self, block, layers, channels, mid_channel, keypoint_num, nr_stg):
super(MSPN, self).__init__()
block = getattr(resnet, block)
norm = M.BatchNorm2d
self.nr_stg = nr_stg
self.keypoint_num = keypoint_num
self.head = M.Sequential(
M.Conv2d(3, 64, 3, 2, 1),
norm(64),
M.ReLU(),
M.Conv2d(64, 64, 3, 1, 1),
norm(64),
M.ReLU(),
M.Conv2d(64, 64, 3, 2, 1),
norm(64),
M.ReLU(),
)
self.stages = {}
for i in range(nr_stg):
init_channel = 64
self.stages["Stage_{}_body".format(i)] = SingleStage(
block, init_channel, layers, channels, mid_channel, norm
)
tail = {}
for j in range(4):
tail["tail_{}".format(j)] = M.Conv2d(mid_channel, keypoint_num, 3, 1, 1)
self.stages["Stage_{}_tail".format(i)] = tail
if i < nr_stg - 1:
self.stages["Stage_{}_next".format(i)] = M.Sequential(
M.Conv2d(mid_channel, 64, 1, 1, 0), norm(64), M.ReLU()
)
self.inputs = {
"image": mge.tensor(dtype="float32"),
"heatmap": mge.tensor(dtype="float32"),
"heat_valid": mge.tensor(dtype="float32"),
}
def calc_loss(self):
outs = self.forward(self.inputs["image"])
loss = 0
for stage_out in outs:
for ind, scale_out in enumerate(stage_out[:-1]):
label = (
self.inputs["heatmap"][:, ind]
* (self.inputs["heat_valid"] > 1.1)[:, :, None, None]
)
tmp = F.square_loss(scale_out, label)
loss += tmp / 4 / len(outs)
# OHKM loss for the largest heatmap
tmp = ((stage_out[-1] - self.inputs["heatmap"][:, -1]) ** 2).mean(3).mean(
2
) * (self.inputs["heat_valid"] > 0.1)
ohkm_loss = 0
for i in range(tmp.shape[0]):
selected_loss, _ = F.top_k(
tmp[i], self.keypoint_num // 2, descending=True
)
ohkm_loss += selected_loss.mean()
ohkm_loss /= tmp.shape[0]
loss += ohkm_loss
return loss
def predict(self):
outputs = self.forward(self.inputs["image"])
pred = outputs[-1][-1]
return pred
def forward(self, x):
f = self.head(x)
outputs = []
for i in range(self.nr_stg):
multi_scale_features = self.stages["Stage_{}_body".format(i)](f)
multi_scale_heatmaps = []
for j in range(4):
out = self.stages["Stage_{}_tail".format(i)]["tail_{}".format(j)](
multi_scale_features[j]
)
out = F.interpolate(out, scale_factor=2 ** (3 - j))
multi_scale_heatmaps.append(out)
if i < self.nr_stg - 1:
f = self.stages["Stage_{}_next".format(i)](multi_scale_features[-1])
outputs.append(multi_scale_heatmaps)
return outputs
@ | hub.pretrained(
"https://data.megengine.org.cn/models/weights/mspn_4stage_256x192_0_255_75_2.pkl"
) | megengine.hub.pretrained |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import megengine.module as M
import math
import official.vision.classification.resnet.model as resnet
import numpy as np
class ResnetBody(M.Module):
def __init__(
self,
block,
init_channel,
layers,
channels,
zero_init_residual=False,
norm=M.BatchNorm2d,
):
super(ResnetBody, self).__init__()
self.in_channels = init_channel
self.layer1 = self._make_layer(
block, channels[0], layers[0], stride=1, norm=norm
)
self.layer2 = self._make_layer(
block, channels[1], layers[1], stride=2, norm=norm
)
self.layer3 = self._make_layer(
block, channels[2], layers[2], stride=2, norm=norm,
)
self.layer4 = self._make_layer(
block, channels[3], layers[3], stride=2, norm=norm,
)
for m in self.modules():
if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
elif isinstance(m, M.BatchNorm2d):
M.init.ones_(m.weight)
M.init.zeros_(m.bias)
elif isinstance(m, M.Linear):
M.init.msra_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
def _make_layer(self, block, channels, blocks, stride=1, norm=M.BatchNorm2d):
layers = []
layers.append(block(self.in_channels, channels, stride, norm=norm))
self.in_channels = channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, channels, norm=norm))
return | M.Sequential(*layers) | megengine.module.Sequential |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import megengine.module as M
import math
import official.vision.classification.resnet.model as resnet
import numpy as np
class ResnetBody(M.Module):
def __init__(
self,
block,
init_channel,
layers,
channels,
zero_init_residual=False,
norm=M.BatchNorm2d,
):
super(ResnetBody, self).__init__()
self.in_channels = init_channel
self.layer1 = self._make_layer(
block, channels[0], layers[0], stride=1, norm=norm
)
self.layer2 = self._make_layer(
block, channels[1], layers[1], stride=2, norm=norm
)
self.layer3 = self._make_layer(
block, channels[2], layers[2], stride=2, norm=norm,
)
self.layer4 = self._make_layer(
block, channels[3], layers[3], stride=2, norm=norm,
)
for m in self.modules():
if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
elif isinstance(m, M.BatchNorm2d):
M.init.ones_(m.weight)
M.init.zeros_(m.bias)
elif isinstance(m, M.Linear):
M.init.msra_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
def _make_layer(self, block, channels, blocks, stride=1, norm=M.BatchNorm2d):
layers = []
layers.append(block(self.in_channels, channels, stride, norm=norm))
self.in_channels = channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, channels, norm=norm))
return M.Sequential(*layers)
def forward(self, x):
outputs = []
x = self.layer1(x)
outputs.append(x)
x = self.layer2(x)
outputs.append(x)
x = self.layer3(x)
outputs.append(x)
x = self.layer4(x)
outputs.append(x)
return outputs
class SingleStage(M.Module):
def __init__(
self, block, init_channel, layers, channels, mid_channel, norm=M.BatchNorm2d
):
super(SingleStage, self).__init__()
self.down = ResnetBody(block, init_channel, layers, channels, norm)
channel = block.expansion * channels[-1]
self.up1 = M.Sequential(
| M.Conv2d(channel, mid_channel, 1, 1, 0) | megengine.module.Conv2d |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import megengine as mge
import megengine.functional as F
import megengine.hub as hub
import megengine.module as M
import math
import official.vision.classification.resnet.model as resnet
import numpy as np
class ResnetBody(M.Module):
def __init__(
self,
block,
init_channel,
layers,
channels,
zero_init_residual=False,
norm=M.BatchNorm2d,
):
super(ResnetBody, self).__init__()
self.in_channels = init_channel
self.layer1 = self._make_layer(
block, channels[0], layers[0], stride=1, norm=norm
)
self.layer2 = self._make_layer(
block, channels[1], layers[1], stride=2, norm=norm
)
self.layer3 = self._make_layer(
block, channels[2], layers[2], stride=2, norm=norm,
)
self.layer4 = self._make_layer(
block, channels[3], layers[3], stride=2, norm=norm,
)
for m in self.modules():
if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
elif isinstance(m, M.BatchNorm2d):
M.init.ones_(m.weight)
M.init.zeros_(m.bias)
elif isinstance(m, M.Linear):
M.init.msra_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
M.init.uniform_(m.bias, -bound, bound)
def _make_layer(self, block, channels, blocks, stride=1, norm=M.BatchNorm2d):
layers = []
layers.append(block(self.in_channels, channels, stride, norm=norm))
self.in_channels = channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, channels, norm=norm))
return M.Sequential(*layers)
def forward(self, x):
outputs = []
x = self.layer1(x)
outputs.append(x)
x = self.layer2(x)
outputs.append(x)
x = self.layer3(x)
outputs.append(x)
x = self.layer4(x)
outputs.append(x)
return outputs
class SingleStage(M.Module):
def __init__(
self, block, init_channel, layers, channels, mid_channel, norm=M.BatchNorm2d
):
super(SingleStage, self).__init__()
self.down = ResnetBody(block, init_channel, layers, channels, norm)
channel = block.expansion * channels[-1]
self.up1 = M.Sequential(
M.Conv2d(channel, mid_channel, 1, 1, 0), norm(mid_channel)
)
self.deconv1 = M.Sequential(
| M.ConvTranspose2d(mid_channel, mid_channel, 4, 2, 1) | megengine.module.ConvTranspose2d |