prompt
stringlengths 94
42.6k
| completion
stringlengths 6
120
| api
stringlengths 14
68
|
---|---|---|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import time
import numpy as np
import pytest
from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
Compose,
Normalize,
PseudoTransform,
ToMode,
Transform,
)
def init_dataset():
sample_num = 100
rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
def test_dataloader_init():
dataset = init_dataset()
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=2, divide=True)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, timeout=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=0, divide=True)
dataloader = DataLoader(dataset)
assert isinstance(dataloader.sampler, SequentialSampler)
assert isinstance(dataloader.transform, PseudoTransform)
assert isinstance(dataloader.collator, Collator)
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
)
assert len(dataloader) == 17
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
)
assert len(dataloader) == 16
class MyStream(StreamDataset):
def __init__(self, number, batch=False, error_foramt=False, block=False):
self.number = number
self.batch = batch
self.error_format = error_foramt
self.block = block
def __iter__(self):
for cnt in range(self.number):
if self.block:
for _ in range(10):
time.sleep(1)
if self.batch:
data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
yield (True, (data, [cnt, cnt - self.number]))
else:
data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
if self.error_format:
yield (data, cnt)
else:
yield (False, (data, cnt))
raise StopIteration
@pytest.mark.parametrize("batch", [True, False])
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader(batch, num_workers):
dataset = MyStream(100, batch=batch)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(
dataset,
sampler,
Compose([ | Normalize(mean=(103, 116, 123), std=(57, 57, 58)) | megengine.data.transform.Normalize |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import time
import numpy as np
import pytest
from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
Compose,
Normalize,
PseudoTransform,
ToMode,
Transform,
)
def init_dataset():
sample_num = 100
rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
def test_dataloader_init():
dataset = init_dataset()
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=2, divide=True)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, timeout=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=0, divide=True)
dataloader = DataLoader(dataset)
assert isinstance(dataloader.sampler, SequentialSampler)
assert isinstance(dataloader.transform, PseudoTransform)
assert isinstance(dataloader.collator, Collator)
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
)
assert len(dataloader) == 17
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
)
assert len(dataloader) == 16
class MyStream(StreamDataset):
def __init__(self, number, batch=False, error_foramt=False, block=False):
self.number = number
self.batch = batch
self.error_format = error_foramt
self.block = block
def __iter__(self):
for cnt in range(self.number):
if self.block:
for _ in range(10):
time.sleep(1)
if self.batch:
data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
yield (True, (data, [cnt, cnt - self.number]))
else:
data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
if self.error_format:
yield (data, cnt)
else:
yield (False, (data, cnt))
raise StopIteration
@pytest.mark.parametrize("batch", [True, False])
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader(batch, num_workers):
dataset = MyStream(100, batch=batch)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(
dataset,
sampler,
Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), | ToMode("CHW") | megengine.data.transform.ToMode |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import time
import numpy as np
import pytest
from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
Compose,
Normalize,
PseudoTransform,
ToMode,
Transform,
)
def init_dataset():
sample_num = 100
rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
def test_dataloader_init():
dataset = init_dataset()
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=2, divide=True)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, timeout=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=0, divide=True)
dataloader = DataLoader(dataset)
assert isinstance(dataloader.sampler, SequentialSampler)
assert isinstance(dataloader.transform, PseudoTransform)
assert isinstance(dataloader.collator, Collator)
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
)
assert len(dataloader) == 17
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
)
assert len(dataloader) == 16
class MyStream(StreamDataset):
def __init__(self, number, batch=False, error_foramt=False, block=False):
self.number = number
self.batch = batch
self.error_format = error_foramt
self.block = block
def __iter__(self):
for cnt in range(self.number):
if self.block:
for _ in range(10):
time.sleep(1)
if self.batch:
data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
yield (True, (data, [cnt, cnt - self.number]))
else:
data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
if self.error_format:
yield (data, cnt)
else:
yield (False, (data, cnt))
raise StopIteration
@pytest.mark.parametrize("batch", [True, False])
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader(batch, num_workers):
dataset = MyStream(100, batch=batch)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(
dataset,
sampler,
Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
num_workers=num_workers,
)
check_set = set()
for step, data in enumerate(dataloader):
if step == 10:
break
assert data[0].shape == (4, 3, 2, 2)
assert data[1].shape == (4,)
for i in data[1]:
assert i not in check_set
check_set.add(i)
def test_stream_dataloader_error():
dataset = MyStream(100, error_foramt=True)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(dataset, sampler)
with pytest.raises(AssertionError, match=r".*tuple.*"):
data_iter = iter(dataloader)
next(data_iter)
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
dataset = MyStream(100, False, block=True)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
with pytest.raises(RuntimeError, match=r".*timeout.*"):
data_iter = iter(dataloader)
next(data_iter)
def test_dataloader_serial():
dataset = init_dataset()
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
def test_dataloader_parallel():
# set max shared memory to 100M
os.environ["MGE_PLASMA_MEMORY"] = "100000000"
dataset = init_dataset()
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=False,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=True,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
@pytest.mark.skipif(
platform.system() == "Windows",
reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_timeout():
dataset = init_dataset()
class TimeoutTransform(Transform):
def __init__(self):
pass
def apply(self, input):
time.sleep(10)
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=TimeoutTransform(),
num_workers=2,
timeout=2,
)
with pytest.raises(RuntimeError, match=r".*timeout.*"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
@pytest.mark.skipif(
platform.system() == "Windows",
reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_worker_exception():
dataset = init_dataset()
class FakeErrorTransform(Transform):
def __init__(self):
pass
def apply(self, input):
raise RuntimeError("test raise error")
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=FakeErrorTransform(),
num_workers=2,
)
with pytest.raises(RuntimeError, match=r"worker.*died"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
def _multi_instances_parallel_dataloader_worker():
dataset = init_dataset()
for divide_flag in [True, False]:
train_dataloader = DataLoader(
dataset,
sampler= | RandomSampler(dataset, batch_size=4, drop_last=False) | megengine.data.sampler.RandomSampler |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import time
import numpy as np
import pytest
from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
Compose,
Normalize,
PseudoTransform,
ToMode,
Transform,
)
def init_dataset():
sample_num = 100
rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
def test_dataloader_init():
dataset = init_dataset()
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=2, divide=True)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, timeout=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=0, divide=True)
dataloader = DataLoader(dataset)
assert isinstance(dataloader.sampler, SequentialSampler)
assert isinstance(dataloader.transform, PseudoTransform)
assert isinstance(dataloader.collator, Collator)
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
)
assert len(dataloader) == 17
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
)
assert len(dataloader) == 16
class MyStream(StreamDataset):
def __init__(self, number, batch=False, error_foramt=False, block=False):
self.number = number
self.batch = batch
self.error_format = error_foramt
self.block = block
def __iter__(self):
for cnt in range(self.number):
if self.block:
for _ in range(10):
time.sleep(1)
if self.batch:
data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
yield (True, (data, [cnt, cnt - self.number]))
else:
data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
if self.error_format:
yield (data, cnt)
else:
yield (False, (data, cnt))
raise StopIteration
@pytest.mark.parametrize("batch", [True, False])
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader(batch, num_workers):
dataset = MyStream(100, batch=batch)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(
dataset,
sampler,
Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
num_workers=num_workers,
)
check_set = set()
for step, data in enumerate(dataloader):
if step == 10:
break
assert data[0].shape == (4, 3, 2, 2)
assert data[1].shape == (4,)
for i in data[1]:
assert i not in check_set
check_set.add(i)
def test_stream_dataloader_error():
dataset = MyStream(100, error_foramt=True)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(dataset, sampler)
with pytest.raises(AssertionError, match=r".*tuple.*"):
data_iter = iter(dataloader)
next(data_iter)
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
dataset = MyStream(100, False, block=True)
sampler = StreamSampler(batch_size=4)
dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
with pytest.raises(RuntimeError, match=r".*timeout.*"):
data_iter = iter(dataloader)
next(data_iter)
def test_dataloader_serial():
dataset = init_dataset()
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
def test_dataloader_parallel():
# set max shared memory to 100M
os.environ["MGE_PLASMA_MEMORY"] = "100000000"
dataset = init_dataset()
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=False,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=True,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
@pytest.mark.skipif(
platform.system() == "Windows",
reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_timeout():
dataset = init_dataset()
class TimeoutTransform(Transform):
def __init__(self):
pass
def apply(self, input):
time.sleep(10)
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=TimeoutTransform(),
num_workers=2,
timeout=2,
)
with pytest.raises(RuntimeError, match=r".*timeout.*"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
@pytest.mark.skipif(
platform.system() == "Windows",
reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_worker_exception():
dataset = init_dataset()
class FakeErrorTransform(Transform):
def __init__(self):
pass
def apply(self, input):
raise RuntimeError("test raise error")
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=FakeErrorTransform(),
num_workers=2,
)
with pytest.raises(RuntimeError, match=r"worker.*died"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
def _multi_instances_parallel_dataloader_worker():
dataset = init_dataset()
for divide_flag in [True, False]:
train_dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=divide_flag,
)
val_dataloader = DataLoader(
dataset,
sampler= | RandomSampler(dataset, batch_size=10, drop_last=False) | megengine.data.sampler.RandomSampler |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = | dtype.qint8(scale) | megengine.core.tensor.dtype.qint8 |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = | F.round(x) | megengine.functional.round |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = | F.clip(x, -128, 127) | megengine.functional.clip |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = | Float.QuantStub() | megengine.module.QuantStub |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = | QAT.QuantStub.from_float_module(normal_net) | megengine.module.qat.QuantStub.from_float_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
| disable_observer(qat_from_float) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
| disable_fake_quant(qat_from_float) | megengine.quantization.quantize.disable_fake_quant |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = | QAT.QuantStub() | megengine.module.qat.QuantStub |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
| disable_observer(qat_net) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
| propagate_qconfig(qat_net, min_max_fakequant_qconfig) | megengine.quantization.quantize.propagate_qconfig |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = | Q.QuantStub.from_qat_module(qat_net) | megengine.module.quantized.QuantStub.from_qat_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = | Float.DequantStub() | megengine.module.DequantStub |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = | QAT.DequantStub.from_float_module(normal_net) | megengine.module.qat.DequantStub.from_float_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
| disable_fake_quant(qat_from_float) | megengine.quantization.quantize.disable_fake_quant |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
| disable_observer(qat_from_float) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = | QAT.DequantStub() | megengine.module.qat.DequantStub |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
| disable_observer(qat_net) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
| propagate_qconfig(qat_net, min_max_fakequant_qconfig) | megengine.quantization.quantize.propagate_qconfig |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = | Q.DequantStub.from_qat_module(qat_net) | megengine.module.quantized.DequantStub.from_qat_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = | Float.Elemwise(kind) | megengine.module.Elemwise |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = | QAT.Elemwise.from_float_module(normal_net) | megengine.module.qat.Elemwise.from_float_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
| disable_observer(qat_from_float) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
| disable_fake_quant(qat_from_float) | megengine.quantization.quantize.disable_fake_quant |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = | QAT.Elemwise(kind) | megengine.module.qat.Elemwise |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
| disable_observer(qat_net) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
| propagate_qconfig(qat_net, min_max_fakequant_qconfig) | megengine.quantization.quantize.propagate_qconfig |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = | Q.Elemwise.from_qat_module(qat_net) | megengine.module.quantized.Elemwise.from_qat_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = | Float.Linear(3, 3, bias=True) | megengine.module.Linear |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = | QAT.Linear(3, 3, bias=True) | megengine.module.qat.Linear |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
| disable_observer(qat_net) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
| propagate_qconfig(qat_net, min_max_fakequant_qconfig) | megengine.quantization.quantize.propagate_qconfig |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = | QAT.Linear.from_float_module(normal_net) | megengine.module.qat.Linear.from_float_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
| disable_fake_quant(qat_from_float) | megengine.quantization.quantize.disable_fake_quant |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
| disable_observer(qat_from_float) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
q_net = | Q.Linear.from_qat_module(qat_net) | megengine.module.quantized.Linear.from_qat_module |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
q_net = Q.Linear.from_qat_module(qat_net)
q_net.eval()
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"])
def test_conv(module):
normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True)
normal_net.eval()
qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True)
qat_net.eval()
| disable_observer(qat_net) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
q_net = Q.Linear.from_qat_module(qat_net)
q_net.eval()
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"])
def test_conv(module):
normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True)
normal_net.eval()
qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True)
qat_net.eval()
disable_observer(qat_net)
| propagate_qconfig(qat_net, min_max_fakequant_qconfig) | megengine.quantization.quantize.propagate_qconfig |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
q_net = Q.Linear.from_qat_module(qat_net)
q_net.eval()
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"])
def test_conv(module):
normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True)
normal_net.eval()
qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(1, 3, 3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3, 3, 3)).astype("float32")
bias = np.random.normal(size=(1, 3, 1, 1)).astype("float32")
if module in ("ConvBn2d", "ConvBnRelu2d"):
normal_net.conv.weight.set_value(fake_quant(weight, weight_scale))
normal_net.conv.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.conv.weight.set_value(weight)
qat_net.conv.bias.set_value(bias)
else:
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = getattr(QAT, module).from_float_module(normal_net)
qat_from_float.eval()
| disable_observer(qat_from_float) | megengine.quantization.quantize.disable_observer |
import numpy as np
import pytest
import megengine as mge
import megengine.functional as F
import megengine.module as Float
import megengine.module.qat as QAT
import megengine.module.quantized as Q
from megengine.core.tensor import dtype
from megengine.quantization import min_max_fakequant_qconfig
from megengine.quantization.quantize import (
disable_fake_quant,
disable_observer,
propagate_qconfig,
)
"""
Calculate testing scales based on ``min_max_fakequant_qconfig``
"""
inp_scale = np.float32(np.random.rand() + 1)
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32")
max_val = np.random.randint(1, 127, size=(2,)).astype("float32")
weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2)
act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2)
def quant(x, scale):
inp_dtype = dtype.qint8(scale)
return x.astype(inp_dtype)
def fake_quant(x, scale):
x = x / scale
x = F.round(x)
x = F.clip(x, -128, 127)
x = x * scale
return x
def init_qat_net(net):
if net.with_weight:
net.weight_observer.min_val.set_value(min_val[0])
net.weight_observer.max_val.set_value(max_val[0])
if net.with_act:
net.act_observer.min_val.set_value(min_val[1])
net.act_observer.max_val.set_value(max_val[1])
def test_quant_stub():
normal_net = Float.QuantStub()
normal_net.eval()
qat_from_float = QAT.QuantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.QuantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.QuantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_dequant_stub():
normal_net = Float.DequantStub()
normal_net.eval()
qat_from_float = QAT.DequantStub.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
qat_net = QAT.DequantStub()
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.DequantStub.from_qat_module(qat_net)
q_net.eval()
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = normal_net(x)
qat = qat_net(x)
q = q_net(quant(x, inp_scale)).numpy()
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"])
def test_elemwise(kind):
normal_net = Float.Elemwise(kind)
normal_net.eval()
qat_from_float = QAT.Elemwise.from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
disable_fake_quant(qat_from_float)
qat_net = QAT.Elemwise(kind)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
q_net = Q.Elemwise.from_qat_module(qat_net)
q_net.eval()
x1_scale = np.float32(np.random.rand() + 1)
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x1 = fake_quant(x1, x1_scale)
x1.q_dict["scale"] = x1_scale
x2_scale = np.float32(np.random.rand() + 1)
x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x2 = fake_quant(x2, x2_scale)
x2.q_dict["scale"] = x2_scale
x1_int8 = quant(x1, x1_scale)
x2_int8 = quant(x2, x2_scale)
# test correctness of `Float`, `QAT` and `Quantized`
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"):
normal = normal_net(x1, x2)
qat_without_fakequant = qat_from_float(x1, x2)
fake_quant_normal = fake_quant(normal_net(x1, x2), act_scale)
qat = qat_net(x1, x2)
q = q_net(x1_int8, x2_int8).numpy() * act_scale
else:
normal = normal_net(x1)
qat_without_fakequant = qat_from_float(x1)
fake_quant_normal = fake_quant(normal_net(x1), act_scale)
qat = qat_net(x1)
q = q_net(x1_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
def test_linear():
normal_net = Float.Linear(3, 3, bias=True)
normal_net.eval()
qat_net = QAT.Linear(3, 3, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3)).astype("float32")
bias = np.random.normal(size=(3,)).astype("float32")
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = QAT.Linear.from_float_module(normal_net)
qat_from_float.eval()
disable_fake_quant(qat_from_float)
disable_observer(qat_from_float)
q_net = Q.Linear.from_qat_module(qat_net)
q_net.eval()
normal = normal_net(x)
qat_without_fakequant = qat_from_float(x)
fake_quant_normal = fake_quant(normal_net(x), act_scale)
qat = qat_net(x)
q = q_net(x_int8).numpy() * act_scale
np.testing.assert_allclose(qat_without_fakequant, normal)
np.testing.assert_allclose(qat, fake_quant_normal)
np.testing.assert_allclose(q, fake_quant_normal.numpy())
@pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"])
def test_conv(module):
normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True)
normal_net.eval()
qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True)
qat_net.eval()
disable_observer(qat_net)
propagate_qconfig(qat_net, min_max_fakequant_qconfig)
init_qat_net(qat_net)
x = mge.tensor(np.random.normal(size=(1, 3, 3, 3)).astype("float32"))
x = fake_quant(x, inp_scale)
x.q_dict["scale"] = inp_scale
x_int8 = quant(x, inp_scale)
weight = np.random.normal(size=(3, 3, 3, 3)).astype("float32")
bias = np.random.normal(size=(1, 3, 1, 1)).astype("float32")
if module in ("ConvBn2d", "ConvBnRelu2d"):
normal_net.conv.weight.set_value(fake_quant(weight, weight_scale))
normal_net.conv.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.conv.weight.set_value(weight)
qat_net.conv.bias.set_value(bias)
else:
normal_net.weight.set_value(fake_quant(weight, weight_scale))
normal_net.bias.set_value(fake_quant(bias, inp_scale * weight_scale))
qat_net.weight.set_value(weight)
qat_net.bias.set_value(bias)
qat_from_float = getattr(QAT, module).from_float_module(normal_net)
qat_from_float.eval()
disable_observer(qat_from_float)
| disable_fake_quant(qat_from_float) | megengine.quantization.quantize.disable_fake_quant |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = | mge.get_logger(__name__) | megengine.get_logger |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"])
queue = data.DataLoader(dataset, sampler=sampler, transform=preprocess)
return dataset, queue
def extract_vanilla_feature(n, data_queue):
"""extract features without any postprocessing
Args:
n (int): size of dataset
data_queue (data.DataLoader): dataloader to extract feature
Returns:
feature_store (np.array): extracted feature (shape: n * feature_dim)
label (np.array): label of this instance, -1 if unknown (shape: n)
is_noise (np.array): whether this instance is a noise (shape: n)
"""
feature_store = np.zeros((n, configs["feature_dim"]), dtype="float32")
label_store = np.zeros(n, dtype="int32")
is_noise_store = np.zeros(n, dtype="bool")
for images, indice, labels, is_noise in tqdm(data_queue):
images = mge.tensor(images, dtype="float32")
embedding = inference_func(images)
embedding = embedding.numpy()
feature_store[indice] = embedding
label_store[indice] = labels
is_noise_store[indice] = is_noise
return feature_store, label_store, is_noise_store
# prepare facescrub dataset
logger.info("preparing facescrub dataset...")
facescrub_dataset, facescrub_queue = prepare_dataset("facescrub")
# extract facescrub feature
logger.info("extracting facescrub...")
facescrub_feature_store, facescrub_label, facescrub_is_noise = extract_vanilla_feature(
n=len(facescrub_dataset), data_queue=facescrub_queue
)
# prepare megaface dataset
logger.info("preparing megaface dataset...")
megaface_dataset, megaface_queue = prepare_dataset("megaface")
# extract feature for megaface
logger.info("extracting megaface...")
megaface_feature_store, _, megaface_is_noise = extract_vanilla_feature(
n=len(megaface_dataset), data_queue=megaface_queue
)
# parse facescrub noise, replace noisy feature with class center of same person
facescrub_feature_center = np.zeros((facescrub_dataset.num_class, configs["feature_dim"]), dtype="float32")
for i in range(facescrub_dataset.num_class):
mask = (facescrub_label == i) & (~facescrub_is_noise)
center = facescrub_feature_store[mask].sum(axis=0)
center = center / np.linalg.norm(center)
facescrub_feature_center[i] = center
for index in np.where(facescrub_is_noise)[0]:
center = facescrub_feature_center[facescrub_label[index]]
disturb = np.random.uniform(-1e-5, 1e-5, (configs["feature_dim"],))
feat = center + disturb # avoid identical features with minor disturb
feat = feat / np.linalg.norm(feat)
facescrub_feature_store[index] = feat
# extend feature by 1 dimension
# the extended feature is infinitly large (100) if and only if megaface noise, 0 otherwise
# so, the distance between probe and a noisy distractor is infinitly large, while other distances remain unchanged
facescrub_feature_extend = np.zeros((len(facescrub_dataset), 1), dtype="float32")
facescrub_feature = np.concatenate([facescrub_feature_store, facescrub_feature_extend], axis=1)
megaface_feature_extend = megaface_is_noise.astype("float32").reshape(-1, 1) * 100
megaface_feature = np.concatenate([megaface_feature_store, megaface_feature_extend], axis=1)
# write to file system
facescrub_feature_path = os.path.join(configs["base_dir"], "facescrub.npy")
np.save(facescrub_feature_path, facescrub_feature)
facescrub_label_path = os.path.join(configs["base_dir"], "facescrub_label.npy")
np.save(facescrub_label_path, facescrub_label)
megaface_feature_path = os.path.join(configs["base_dir"], "megaface.npy")
np.save(megaface_feature_path, megaface_feature)
return facescrub_feature, facescrub_label, megaface_feature
def calculate_score(configs, facescrub, labels, megaface):
"""calculate megaface identification top1 score. this evaluation implement strictly follows the description of
`"The MegaFace Benchmark: 1 Million Faces for Recognition at Scale" <https://arxiv.org/pdf/1512.00596.pdf>`_
this implement outputs exactly the same as dev-sdk provided by the official, but with much higher speed
Args:
configs (dict): configuration
facescrub (np.array): feature of facescrub
labels (np.array): label of facescrub
megaface (np.array): feature of megaface
Returns:
megaface_score (float): top1 score of megaface
"""
facescrub = | mge.tensor(facescrub, dtype="float32") | megengine.tensor |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"])
queue = data.DataLoader(dataset, sampler=sampler, transform=preprocess)
return dataset, queue
def extract_vanilla_feature(n, data_queue):
"""extract features without any postprocessing
Args:
n (int): size of dataset
data_queue (data.DataLoader): dataloader to extract feature
Returns:
feature_store (np.array): extracted feature (shape: n * feature_dim)
label (np.array): label of this instance, -1 if unknown (shape: n)
is_noise (np.array): whether this instance is a noise (shape: n)
"""
feature_store = np.zeros((n, configs["feature_dim"]), dtype="float32")
label_store = np.zeros(n, dtype="int32")
is_noise_store = np.zeros(n, dtype="bool")
for images, indice, labels, is_noise in tqdm(data_queue):
images = mge.tensor(images, dtype="float32")
embedding = inference_func(images)
embedding = embedding.numpy()
feature_store[indice] = embedding
label_store[indice] = labels
is_noise_store[indice] = is_noise
return feature_store, label_store, is_noise_store
# prepare facescrub dataset
logger.info("preparing facescrub dataset...")
facescrub_dataset, facescrub_queue = prepare_dataset("facescrub")
# extract facescrub feature
logger.info("extracting facescrub...")
facescrub_feature_store, facescrub_label, facescrub_is_noise = extract_vanilla_feature(
n=len(facescrub_dataset), data_queue=facescrub_queue
)
# prepare megaface dataset
logger.info("preparing megaface dataset...")
megaface_dataset, megaface_queue = prepare_dataset("megaface")
# extract feature for megaface
logger.info("extracting megaface...")
megaface_feature_store, _, megaface_is_noise = extract_vanilla_feature(
n=len(megaface_dataset), data_queue=megaface_queue
)
# parse facescrub noise, replace noisy feature with class center of same person
facescrub_feature_center = np.zeros((facescrub_dataset.num_class, configs["feature_dim"]), dtype="float32")
for i in range(facescrub_dataset.num_class):
mask = (facescrub_label == i) & (~facescrub_is_noise)
center = facescrub_feature_store[mask].sum(axis=0)
center = center / np.linalg.norm(center)
facescrub_feature_center[i] = center
for index in np.where(facescrub_is_noise)[0]:
center = facescrub_feature_center[facescrub_label[index]]
disturb = np.random.uniform(-1e-5, 1e-5, (configs["feature_dim"],))
feat = center + disturb # avoid identical features with minor disturb
feat = feat / np.linalg.norm(feat)
facescrub_feature_store[index] = feat
# extend feature by 1 dimension
# the extended feature is infinitly large (100) if and only if megaface noise, 0 otherwise
# so, the distance between probe and a noisy distractor is infinitly large, while other distances remain unchanged
facescrub_feature_extend = np.zeros((len(facescrub_dataset), 1), dtype="float32")
facescrub_feature = np.concatenate([facescrub_feature_store, facescrub_feature_extend], axis=1)
megaface_feature_extend = megaface_is_noise.astype("float32").reshape(-1, 1) * 100
megaface_feature = np.concatenate([megaface_feature_store, megaface_feature_extend], axis=1)
# write to file system
facescrub_feature_path = os.path.join(configs["base_dir"], "facescrub.npy")
np.save(facescrub_feature_path, facescrub_feature)
facescrub_label_path = os.path.join(configs["base_dir"], "facescrub_label.npy")
np.save(facescrub_label_path, facescrub_label)
megaface_feature_path = os.path.join(configs["base_dir"], "megaface.npy")
np.save(megaface_feature_path, megaface_feature)
return facescrub_feature, facescrub_label, megaface_feature
def calculate_score(configs, facescrub, labels, megaface):
"""calculate megaface identification top1 score. this evaluation implement strictly follows the description of
`"The MegaFace Benchmark: 1 Million Faces for Recognition at Scale" <https://arxiv.org/pdf/1512.00596.pdf>`_
this implement outputs exactly the same as dev-sdk provided by the official, but with much higher speed
Args:
configs (dict): configuration
facescrub (np.array): feature of facescrub
labels (np.array): label of facescrub
megaface (np.array): feature of megaface
Returns:
megaface_score (float): top1 score of megaface
"""
facescrub = mge.tensor(facescrub, dtype="float32")
megaface = | mge.tensor(megaface, dtype="float32") | megengine.tensor |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"])
queue = data.DataLoader(dataset, sampler=sampler, transform=preprocess)
return dataset, queue
def extract_vanilla_feature(n, data_queue):
"""extract features without any postprocessing
Args:
n (int): size of dataset
data_queue (data.DataLoader): dataloader to extract feature
Returns:
feature_store (np.array): extracted feature (shape: n * feature_dim)
label (np.array): label of this instance, -1 if unknown (shape: n)
is_noise (np.array): whether this instance is a noise (shape: n)
"""
feature_store = np.zeros((n, configs["feature_dim"]), dtype="float32")
label_store = np.zeros(n, dtype="int32")
is_noise_store = np.zeros(n, dtype="bool")
for images, indice, labels, is_noise in tqdm(data_queue):
images = mge.tensor(images, dtype="float32")
embedding = inference_func(images)
embedding = embedding.numpy()
feature_store[indice] = embedding
label_store[indice] = labels
is_noise_store[indice] = is_noise
return feature_store, label_store, is_noise_store
# prepare facescrub dataset
logger.info("preparing facescrub dataset...")
facescrub_dataset, facescrub_queue = prepare_dataset("facescrub")
# extract facescrub feature
logger.info("extracting facescrub...")
facescrub_feature_store, facescrub_label, facescrub_is_noise = extract_vanilla_feature(
n=len(facescrub_dataset), data_queue=facescrub_queue
)
# prepare megaface dataset
logger.info("preparing megaface dataset...")
megaface_dataset, megaface_queue = prepare_dataset("megaface")
# extract feature for megaface
logger.info("extracting megaface...")
megaface_feature_store, _, megaface_is_noise = extract_vanilla_feature(
n=len(megaface_dataset), data_queue=megaface_queue
)
# parse facescrub noise, replace noisy feature with class center of same person
facescrub_feature_center = np.zeros((facescrub_dataset.num_class, configs["feature_dim"]), dtype="float32")
for i in range(facescrub_dataset.num_class):
mask = (facescrub_label == i) & (~facescrub_is_noise)
center = facescrub_feature_store[mask].sum(axis=0)
center = center / np.linalg.norm(center)
facescrub_feature_center[i] = center
for index in np.where(facescrub_is_noise)[0]:
center = facescrub_feature_center[facescrub_label[index]]
disturb = np.random.uniform(-1e-5, 1e-5, (configs["feature_dim"],))
feat = center + disturb # avoid identical features with minor disturb
feat = feat / np.linalg.norm(feat)
facescrub_feature_store[index] = feat
# extend feature by 1 dimension
# the extended feature is infinitly large (100) if and only if megaface noise, 0 otherwise
# so, the distance between probe and a noisy distractor is infinitly large, while other distances remain unchanged
facescrub_feature_extend = np.zeros((len(facescrub_dataset), 1), dtype="float32")
facescrub_feature = np.concatenate([facescrub_feature_store, facescrub_feature_extend], axis=1)
megaface_feature_extend = megaface_is_noise.astype("float32").reshape(-1, 1) * 100
megaface_feature = np.concatenate([megaface_feature_store, megaface_feature_extend], axis=1)
# write to file system
facescrub_feature_path = os.path.join(configs["base_dir"], "facescrub.npy")
np.save(facescrub_feature_path, facescrub_feature)
facescrub_label_path = os.path.join(configs["base_dir"], "facescrub_label.npy")
np.save(facescrub_label_path, facescrub_label)
megaface_feature_path = os.path.join(configs["base_dir"], "megaface.npy")
np.save(megaface_feature_path, megaface_feature)
return facescrub_feature, facescrub_label, megaface_feature
def calculate_score(configs, facescrub, labels, megaface):
"""calculate megaface identification top1 score. this evaluation implement strictly follows the description of
`"The MegaFace Benchmark: 1 Million Faces for Recognition at Scale" <https://arxiv.org/pdf/1512.00596.pdf>`_
this implement outputs exactly the same as dev-sdk provided by the official, but with much higher speed
Args:
configs (dict): configuration
facescrub (np.array): feature of facescrub
labels (np.array): label of facescrub
megaface (np.array): feature of megaface
Returns:
megaface_score (float): top1 score of megaface
"""
facescrub = mge.tensor(facescrub, dtype="float32")
megaface = mge.tensor(megaface, dtype="float32")
# note: (x - y) ** 2 = x ** 2 + y ** 2 - 2 * x * y
# facescrub_score[i][j] = l2-dist(facescrub[i], facescrub[j])
facescrub_score = (
(facescrub ** 2).sum(axis=-1, keepdims=True)
+ (facescrub ** 2).sum(axis=-1, keepdims=True).transpose(1, 0)
- 2 * F.matmul(facescrub, facescrub.transpose(1, 0))
)
facescrub_score = facescrub_score.numpy()
def get_score_min_megaface(x):
distr_score = (x ** 2).sum(axis=-1) + (megaface ** 2).sum(axis=-1) - 2 * (x * megaface).sum(axis=-1)
return distr_score.min()
up, down = 0, 0
for probe_i in tqdm(range(len(facescrub))):
distr_score_min = get_score_min_megaface(facescrub[probe_i]).numpy()
mask = (labels == labels[probe_i]) & (np.arange(len(facescrub)) != probe_i)
for probe_j in np.where(mask)[0]:
probe_score = facescrub_score[probe_i][probe_j]
up += probe_score < distr_score_min
down += 1
megaface_score = up / down * 100
return megaface_score
def main(args):
configs = load_config_from_path(args.config_file)
configs["evaluate_epoch"] = args.epoch if args.epoch is not None else configs["num_epoch"]
# write log to worklog.txt
os.makedirs(configs["base_dir"], exist_ok=True)
worklog_path = os.path.join(configs["base_dir"], "worklog.txt")
| mge.set_log_file(worklog_path) | megengine.set_log_file |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = | mge.load(checkpoint_path) | megengine.load |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = | F.normalize(embedding, axis=1) | megengine.functional.normalize |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = | data.SequentialSampler(dataset, batch_size=configs["batch_size"]) | megengine.data.SequentialSampler |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"])
queue = | data.DataLoader(dataset, sampler=sampler, transform=preprocess) | megengine.data.DataLoader |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")])
dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"])
sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"])
queue = data.DataLoader(dataset, sampler=sampler, transform=preprocess)
return dataset, queue
def extract_vanilla_feature(n, data_queue):
"""extract features without any postprocessing
Args:
n (int): size of dataset
data_queue (data.DataLoader): dataloader to extract feature
Returns:
feature_store (np.array): extracted feature (shape: n * feature_dim)
label (np.array): label of this instance, -1 if unknown (shape: n)
is_noise (np.array): whether this instance is a noise (shape: n)
"""
feature_store = np.zeros((n, configs["feature_dim"]), dtype="float32")
label_store = np.zeros(n, dtype="int32")
is_noise_store = np.zeros(n, dtype="bool")
for images, indice, labels, is_noise in tqdm(data_queue):
images = | mge.tensor(images, dtype="float32") | megengine.tensor |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([ | T.Normalize(mean=127.5, std=128) | megengine.data.transform.Normalize |
# Copyright (c) Megvii, Inc. and its affiliates.
"""do the evaluation work with single gpu
"""
import argparse
import os
import megengine as mge
import megengine.data as data
import megengine.data.transform as T
import megengine.functional as F
import numpy as np
from tqdm.auto import tqdm
from recognition.datasets import get_eval_dataset
from recognition.models import FaceRecognitionModel
from recognition.tools.utils import load_config_from_path
logger = mge.get_logger(__name__)
def get_inference_func(configs):
"""load checkpoint and construct inference function
Args:
configs (dict): configuration, required fields include:
base_dir: base directory of experiment outputs
evaluate_epoch: model of evaluate_epoch to evaluate
Raises:
FileNotFoundError: model of given epoch is not found
Returns:
inference_func (function): inference function mapping image to embedding
"""
model = FaceRecognitionModel(configs)
evaluate_epoch = configs["evaluate_epoch"]
checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl")
if os.path.exists(checkpoint_path):
checkpoint_data = mge.load(checkpoint_path)
model.load_state_dict(checkpoint_data["state_dict"], strict=False)
else:
raise FileNotFoundError(f"{checkpoint_path} not found!!!")
def inference_func(images):
model.eval()
# classic test-time mirror augment
embedding_origin = model.forward_embedding_only(images)
embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1])
embedding = embedding_origin + embedding_mirror
embedding = F.normalize(embedding, axis=1)
return embedding
return inference_func
def extract_feature_and_clean_noise(configs, inference_func):
"""extract feature and clean noise. the noise cleaning algorithm is proposed in
`"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_
please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for
more detail. this implement does basicly the same thing as the above, but with much higher speed
Args:
configs (dict): configuration, required fields include:
batch_size: inference batch size
feature_dim: model output feature dimension
base_dir: base directory of experiment outputs
dataset_dir: directory of dataset root
inference_func (function): constructed inference function
Returns:
facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1))
facescrub_label (np.array): label of facescrub (shape: n)
megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1))
"""
def prepare_dataset(name):
"""prepare dataset
Args:
name (str): name of the dataset, should be one of {facescrub, megaface}
Returns:
dataset (data.Dataset): required dataset
queue (data.DataLoader): corresponding dataloader
"""
preprocess = T.Compose([T.Normalize(mean=127.5, std=128), | T.ToMode("CHW") | megengine.data.transform.ToMode |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import numpy as np
import yaml
from megengine import jit
from megengine.module.external import ExternOprSubgraph
# "1,3,224,224" -> (1,3,224,224)
def str2tuple(x):
x = x.split(",")
x = [int(a) for a in x]
x = tuple(x)
return x
def main():
parser = argparse.ArgumentParser(
description="load a .pb model and convert to corresponding "
"load-and-run model"
)
parser.add_argument("input", help="mace model file")
parser.add_argument("param", help="mace param file")
parser.add_argument(
"output", help="converted model that can be fed to dump_with_testcase_mge.py"
)
parser.add_argument("config", help="config file with yaml format")
args = parser.parse_args()
with open(args.config, "r") as f:
configs = yaml.load(f)
for model_name in configs["models"]:
# ignore several sub models currently
sub_model = configs["models"][model_name]["subgraphs"][0]
# input/output shapes
isizes = [str2tuple(x) for x in sub_model["input_shapes"]]
# input/output names
input_names = sub_model["input_tensors"]
if "check_tensors" in sub_model:
output_names = sub_model["check_tensors"]
osizes = [str2tuple(x) for x in sub_model["check_shapes"]]
else:
output_names = sub_model["output_tensors"]
osizes = [str2tuple(x) for x in sub_model["output_shapes"]]
with open(args.input, "rb") as fin:
raw_model = fin.read()
with open(args.param, "rb") as fin:
raw_param = fin.read()
model_size = (len(raw_model)).to_bytes(4, byteorder="little")
param_size = (len(raw_param)).to_bytes(4, byteorder="little")
n_inputs = (len(input_names)).to_bytes(4, byteorder="little")
n_outputs = (len(output_names)).to_bytes(4, byteorder="little")
names_buffer = n_inputs + n_outputs
for iname in input_names:
names_buffer += (len(iname)).to_bytes(4, byteorder="little")
names_buffer += str.encode(iname)
for oname in output_names:
names_buffer += (len(oname)).to_bytes(4, byteorder="little")
names_buffer += str.encode(oname)
shapes_buffer = n_outputs
for oshape in osizes:
shapes_buffer += (len(oshape)).to_bytes(4, byteorder="little")
for oi in oshape:
shapes_buffer += oi.to_bytes(4, byteorder="little")
# raw content contains:
# input/output names + output shapes + model buffer + param buffer
wk_raw_content = (
names_buffer
+ shapes_buffer
+ model_size
+ raw_model
+ param_size
+ raw_param
)
net = | ExternOprSubgraph(wk_raw_content, "mace", osizes) | megengine.module.external.ExternOprSubgraph |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import numpy as np
import yaml
from megengine import jit
from megengine.module.external import ExternOprSubgraph
# "1,3,224,224" -> (1,3,224,224)
def str2tuple(x):
x = x.split(",")
x = [int(a) for a in x]
x = tuple(x)
return x
def main():
parser = argparse.ArgumentParser(
description="load a .pb model and convert to corresponding "
"load-and-run model"
)
parser.add_argument("input", help="mace model file")
parser.add_argument("param", help="mace param file")
parser.add_argument(
"output", help="converted model that can be fed to dump_with_testcase_mge.py"
)
parser.add_argument("config", help="config file with yaml format")
args = parser.parse_args()
with open(args.config, "r") as f:
configs = yaml.load(f)
for model_name in configs["models"]:
# ignore several sub models currently
sub_model = configs["models"][model_name]["subgraphs"][0]
# input/output shapes
isizes = [str2tuple(x) for x in sub_model["input_shapes"]]
# input/output names
input_names = sub_model["input_tensors"]
if "check_tensors" in sub_model:
output_names = sub_model["check_tensors"]
osizes = [str2tuple(x) for x in sub_model["check_shapes"]]
else:
output_names = sub_model["output_tensors"]
osizes = [str2tuple(x) for x in sub_model["output_shapes"]]
with open(args.input, "rb") as fin:
raw_model = fin.read()
with open(args.param, "rb") as fin:
raw_param = fin.read()
model_size = (len(raw_model)).to_bytes(4, byteorder="little")
param_size = (len(raw_param)).to_bytes(4, byteorder="little")
n_inputs = (len(input_names)).to_bytes(4, byteorder="little")
n_outputs = (len(output_names)).to_bytes(4, byteorder="little")
names_buffer = n_inputs + n_outputs
for iname in input_names:
names_buffer += (len(iname)).to_bytes(4, byteorder="little")
names_buffer += str.encode(iname)
for oname in output_names:
names_buffer += (len(oname)).to_bytes(4, byteorder="little")
names_buffer += str.encode(oname)
shapes_buffer = n_outputs
for oshape in osizes:
shapes_buffer += (len(oshape)).to_bytes(4, byteorder="little")
for oi in oshape:
shapes_buffer += oi.to_bytes(4, byteorder="little")
# raw content contains:
# input/output names + output shapes + model buffer + param buffer
wk_raw_content = (
names_buffer
+ shapes_buffer
+ model_size
+ raw_model
+ param_size
+ raw_param
)
net = ExternOprSubgraph(wk_raw_content, "mace", osizes)
net.eval()
@ | jit.trace(symbolic=True) | megengine.jit.trace |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
| mge.random.seed(args.seed) | megengine.random.seed |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
| mge.dtr.enable() | megengine.dtr.enable |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = | F.abs(flow_preds[i] - flow_gt) | megengine.functional.abs |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = | dist.get_rank() | megengine.distributed.get_rank |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), | dist.get_world_size() | megengine.distributed.get_world_size |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = | mge.amp.GradScaler() | megengine.amp.GradScaler |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = | mge.load(chk_path, map_location="cpu") | megengine.load |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = mge.tensor(valid_mask)
gt_disp = F.expand_dims(gt_disp, axis=1)
gt_flow = F.concat([gt_disp, gt_disp * 0], axis=1)
# forward
flow_predictions = model(left, right)
# loss & backword
loss = sequence_loss(
flow_predictions, gt_flow, valid_mask, gamma=0.8
)
if args.mixed_precision:
scaler.backward(gm, loss)
else:
gm.backward(loss)
optimizer.step().clear_grad()
# loss stats
loss_item = loss.item()
epoch_total_train_loss += loss_item
t3 = time.perf_counter()
# terminal print log
if rank == 0:
if cur_iters % 5 == 0:
tdata = t2 - t1
time_train_passed = t3 - t0
time_iter_passed = t3 - t1
step_passed = cur_iters - start_iters
eta = (
(total_iters - cur_iters)
/ max(step_passed, 1e-7)
* time_train_passed
)
meta_info = list()
meta_info.append("{:.2g} b/s".format(1.0 / time_iter_passed))
meta_info.append("passed:{}".format(format_time(time_train_passed)))
meta_info.append("eta:{}".format(format_time(eta)))
meta_info.append(
"data_time:{:.2g}".format(tdata / time_iter_passed)
)
meta_info.append(
"lr:{:.5g}".format(optimizer.param_groups[0]["lr"])
)
meta_info.append(
"[{}/{}:{}/{}]".format(
epoch_idx,
args.n_total_epoch,
batch_idx,
args.minibatch_per_epoch,
)
)
loss_info = [" ==> {}:{:.4g}".format("loss", loss_item)]
# exp_name = ['\n' + os.path.basename(os.getcwd())]
info = [",".join(meta_info)] + loss_info
worklog.info("".join(info))
# minibatch loss
tb_log.add_scalar("train/loss_batch", loss_item, cur_iters)
tb_log.add_scalar(
"train/lr", optimizer.param_groups[0]["lr"], cur_iters
)
tb_log.flush()
t1 = time.perf_counter()
if rank == 0:
# epoch loss
tb_log.add_scalar(
"train/loss",
epoch_total_train_loss / args.minibatch_per_epoch,
epoch_idx,
)
tb_log.flush()
# save model params
ckp_data = {
"epoch": epoch_idx,
"iters": cur_iters,
"batch_size": args.batch_size_single * args.nr_gpus,
"epoch_size": args.minibatch_per_epoch,
"train_loss": epoch_total_train_loss / args.minibatch_per_epoch,
"state_dict": model.state_dict(),
"optim_state_dict": optimizer.state_dict(),
}
mge.save(ckp_data, os.path.join(log_model_dir, "latest.mge"))
if epoch_idx % args.model_save_freq_epoch == 0:
save_path = os.path.join(log_model_dir, "epoch-%d.mge" % epoch_idx)
worklog.info(f"Model params saved: {save_path}")
mge.save(ckp_data, save_path)
if rank == 0:
worklog.info("Training is done, exit.")
if __name__ == "__main__":
# train configuration
args = parse_yaml("cfgs/train.yaml")
# distributed training
run = main if mge.get_device_count("gpu") == 1 else | dist.launcher(main) | megengine.distributed.launcher |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [ | dist.make_allreduce_cb("mean") | megengine.distributed.make_allreduce_cb |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = | autodiff.GradManager() | megengine.autodiff.GradManager |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = mge.tensor(valid_mask)
gt_disp = F.expand_dims(gt_disp, axis=1)
gt_flow = F.concat([gt_disp, gt_disp * 0], axis=1)
# forward
flow_predictions = model(left, right)
# loss & backword
loss = sequence_loss(
flow_predictions, gt_flow, valid_mask, gamma=0.8
)
if args.mixed_precision:
scaler.backward(gm, loss)
else:
gm.backward(loss)
optimizer.step().clear_grad()
# loss stats
loss_item = loss.item()
epoch_total_train_loss += loss_item
t3 = time.perf_counter()
# terminal print log
if rank == 0:
if cur_iters % 5 == 0:
tdata = t2 - t1
time_train_passed = t3 - t0
time_iter_passed = t3 - t1
step_passed = cur_iters - start_iters
eta = (
(total_iters - cur_iters)
/ max(step_passed, 1e-7)
* time_train_passed
)
meta_info = list()
meta_info.append("{:.2g} b/s".format(1.0 / time_iter_passed))
meta_info.append("passed:{}".format(format_time(time_train_passed)))
meta_info.append("eta:{}".format(format_time(eta)))
meta_info.append(
"data_time:{:.2g}".format(tdata / time_iter_passed)
)
meta_info.append(
"lr:{:.5g}".format(optimizer.param_groups[0]["lr"])
)
meta_info.append(
"[{}/{}:{}/{}]".format(
epoch_idx,
args.n_total_epoch,
batch_idx,
args.minibatch_per_epoch,
)
)
loss_info = [" ==> {}:{:.4g}".format("loss", loss_item)]
# exp_name = ['\n' + os.path.basename(os.getcwd())]
info = [",".join(meta_info)] + loss_info
worklog.info("".join(info))
# minibatch loss
tb_log.add_scalar("train/loss_batch", loss_item, cur_iters)
tb_log.add_scalar(
"train/lr", optimizer.param_groups[0]["lr"], cur_iters
)
tb_log.flush()
t1 = time.perf_counter()
if rank == 0:
# epoch loss
tb_log.add_scalar(
"train/loss",
epoch_total_train_loss / args.minibatch_per_epoch,
epoch_idx,
)
tb_log.flush()
# save model params
ckp_data = {
"epoch": epoch_idx,
"iters": cur_iters,
"batch_size": args.batch_size_single * args.nr_gpus,
"epoch_size": args.minibatch_per_epoch,
"train_loss": epoch_total_train_loss / args.minibatch_per_epoch,
"state_dict": model.state_dict(),
"optim_state_dict": optimizer.state_dict(),
}
mge.save(ckp_data, os.path.join(log_model_dir, "latest.mge"))
if epoch_idx % args.model_save_freq_epoch == 0:
save_path = os.path.join(log_model_dir, "epoch-%d.mge" % epoch_idx)
worklog.info(f"Model params saved: {save_path}")
mge.save(ckp_data, save_path)
if rank == 0:
worklog.info("Training is done, exit.")
if __name__ == "__main__":
# train configuration
args = parse_yaml("cfgs/train.yaml")
# distributed training
run = main if | mge.get_device_count("gpu") | megengine.get_device_count |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = mge.tensor(valid_mask)
gt_disp = F.expand_dims(gt_disp, axis=1)
gt_flow = F.concat([gt_disp, gt_disp * 0], axis=1)
# forward
flow_predictions = model(left, right)
# loss & backword
loss = sequence_loss(
flow_predictions, gt_flow, valid_mask, gamma=0.8
)
if args.mixed_precision:
scaler.backward(gm, loss)
else:
gm.backward(loss)
optimizer.step().clear_grad()
# loss stats
loss_item = loss.item()
epoch_total_train_loss += loss_item
t3 = time.perf_counter()
# terminal print log
if rank == 0:
if cur_iters % 5 == 0:
tdata = t2 - t1
time_train_passed = t3 - t0
time_iter_passed = t3 - t1
step_passed = cur_iters - start_iters
eta = (
(total_iters - cur_iters)
/ max(step_passed, 1e-7)
* time_train_passed
)
meta_info = list()
meta_info.append("{:.2g} b/s".format(1.0 / time_iter_passed))
meta_info.append("passed:{}".format(format_time(time_train_passed)))
meta_info.append("eta:{}".format(format_time(eta)))
meta_info.append(
"data_time:{:.2g}".format(tdata / time_iter_passed)
)
meta_info.append(
"lr:{:.5g}".format(optimizer.param_groups[0]["lr"])
)
meta_info.append(
"[{}/{}:{}/{}]".format(
epoch_idx,
args.n_total_epoch,
batch_idx,
args.minibatch_per_epoch,
)
)
loss_info = [" ==> {}:{:.4g}".format("loss", loss_item)]
# exp_name = ['\n' + os.path.basename(os.getcwd())]
info = [",".join(meta_info)] + loss_info
worklog.info("".join(info))
# minibatch loss
tb_log.add_scalar("train/loss_batch", loss_item, cur_iters)
tb_log.add_scalar(
"train/lr", optimizer.param_groups[0]["lr"], cur_iters
)
tb_log.flush()
t1 = time.perf_counter()
if rank == 0:
# epoch loss
tb_log.add_scalar(
"train/loss",
epoch_total_train_loss / args.minibatch_per_epoch,
epoch_idx,
)
tb_log.flush()
# save model params
ckp_data = {
"epoch": epoch_idx,
"iters": cur_iters,
"batch_size": args.batch_size_single * args.nr_gpus,
"epoch_size": args.minibatch_per_epoch,
"train_loss": epoch_total_train_loss / args.minibatch_per_epoch,
"state_dict": model.state_dict(),
"optim_state_dict": optimizer.state_dict(),
}
mge.save(ckp_data, os.path.join(log_model_dir, "latest.mge"))
if epoch_idx % args.model_save_freq_epoch == 0:
save_path = os.path.join(log_model_dir, "epoch-%d.mge" % epoch_idx)
worklog.info(f"Model params saved: {save_path}")
| mge.save(ckp_data, save_path) | megengine.save |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with | mge.amp.autocast(enabled=args.mixed_precision) | megengine.amp.autocast |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = | mge.tensor(left) | megengine.tensor |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = | mge.tensor(right) | megengine.tensor |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = | mge.tensor(gt_disp) | megengine.tensor |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = | mge.tensor(valid_mask) | megengine.tensor |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = mge.tensor(valid_mask)
gt_disp = | F.expand_dims(gt_disp, axis=1) | megengine.functional.expand_dims |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean()
return flow_loss
def main(args):
# initial info
mge.random.seed(args.seed)
rank, world_size = dist.get_rank(), dist.get_world_size()
mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization
# directory check
log_model_dir = os.path.join(args.log_dir, "models")
ensure_dir(log_model_dir)
# model / optimizer
model = Model(
max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False
)
optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")]
gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks)
scaler = mge.amp.GradScaler() if args.mixed_precision else None
if rank == 0:
# tensorboard
tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events"))
# worklog
logging.basicConfig(level=eval(args.log_level))
worklog = logging.getLogger("train_logger")
worklog.propagate = False
fileHandler = logging.FileHandler(
os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8"
)
formatter = logging.Formatter(
fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
fileHandler.setFormatter(formatter)
consoleHandler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S"
)
consoleHandler.setFormatter(formatter)
worklog.handlers = [fileHandler, consoleHandler]
# params stat
worklog.info(f"Use {world_size} GPU(s)")
worklog.info("Params: %s" % sum([p.size for p in model.parameters()]))
# load pretrained model if exist
chk_path = os.path.join(log_model_dir, "latest.mge")
if args.loadmodel is not None:
chk_path = args.loadmodel
elif not os.path.exists(chk_path):
chk_path = None
if chk_path is not None:
if rank == 0:
worklog.info(f"loading model: {chk_path}")
pretrained_dict = mge.load(chk_path, map_location="cpu")
resume_epoch_idx = pretrained_dict["epoch"]
resume_iters = pretrained_dict["iters"]
model.load_state_dict(pretrained_dict["state_dict"], strict=True)
optimizer.load_state_dict(pretrained_dict["optim_state_dict"])
start_epoch_idx = resume_epoch_idx + 1
start_iters = resume_iters
else:
start_epoch_idx = 1
start_iters = 0
# auxiliary
if world_size > 1:
dist.bcast_list_(model.tensors())
# datasets
dataset = CREStereoDataset(args.training_data_path)
if rank == 0:
worklog.info(f"Dataset size: {len(dataset)}")
inf_sampler = Infinite(
RandomSampler(
dataset,
batch_size=args.batch_size_single,
drop_last=False,
world_size=world_size,
rank=rank,
seed=args.seed,
)
)
dataloader = DataLoader(
dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True
)
# counter
cur_iters = start_iters
total_iters = args.minibatch_per_epoch * args.n_total_epoch
t0 = time.perf_counter()
for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1):
# adjust learning rate
epoch_total_train_loss = 0
adjust_learning_rate(optimizer, epoch_idx)
model.train()
t1 = time.perf_counter()
batch_idx = 0
for mini_batch_data in dataloader:
if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0:
break
batch_idx += 1
cur_iters += 1
# parse data
left, right, gt_disp, valid_mask = (
mini_batch_data["left"],
mini_batch_data["right"],
mini_batch_data["disparity"],
mini_batch_data["mask"],
)
t2 = time.perf_counter()
with gm: # GradManager
with mge.amp.autocast(enabled=args.mixed_precision):
# pre-process
left = mge.tensor(left)
right = mge.tensor(right)
gt_disp = mge.tensor(gt_disp)
valid_mask = mge.tensor(valid_mask)
gt_disp = F.expand_dims(gt_disp, axis=1)
gt_flow = | F.concat([gt_disp, gt_disp * 0], axis=1) | megengine.functional.concat |
import os
import sys
import time
import logging
from collections import namedtuple
import megengine as mge
import megengine.distributed as dist
import megengine.functional as F
import megengine.autodiff as autodiff
import megengine.optimizer as optim
import yaml
from tensorboardX import SummaryWriter
from nets import Model
from dataset import CREStereoDataset
from megengine.data import DataLoader, RandomSampler, Infinite
def parse_yaml(file_path: str) -> namedtuple:
"""Parse yaml configuration file and return the object in `namedtuple`."""
with open(file_path, "rb") as f:
cfg: dict = yaml.safe_load(f)
args = namedtuple("train_args", cfg.keys())(*cfg.values())
return args
def format_time(elapse):
elapse = int(elapse)
hour = elapse // 3600
minute = elapse % 3600 // 60
seconds = elapse % 60
return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds)
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def adjust_learning_rate(optimizer, epoch):
warm_up = 0.02
const_range = 0.6
min_lr_rate = 0.05
if epoch <= args.n_total_epoch * warm_up:
lr = (1 - min_lr_rate) * args.base_lr / (
args.n_total_epoch * warm_up
) * epoch + min_lr_rate * args.base_lr
elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range:
lr = args.base_lr
else:
lr = (min_lr_rate - 1) * args.base_lr / (
(1 - const_range) * args.n_total_epoch
) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr
optimizer.param_groups[0]["lr"] = lr
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8):
n_predictions = len(flow_preds)
flow_loss = 0.0
for i in range(n_predictions):
i_weight = gamma ** (n_predictions - i - 1)
i_loss = F.abs(flow_preds[i] - flow_gt)
flow_loss += i_weight * ( | F.expand_dims(valid, axis=1) | megengine.functional.expand_dims |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return | mgb.opr.broadcast(inp, shape) | megengine._internal.opr.broadcast |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = | mgb.opr.concat(index0, index1, axis=0) | megengine._internal.opr.concat |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = | mgb.opr.concat(v0, v1, axis=0) | megengine._internal.opr.concat |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = mgb.opr.set_advanced_indexing(out, v)[index]
out = out.reshape(x.shape)
return out
@wrap_io_tensor
def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor:
r"""
Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.
:param mask: condition param; must be the same shape with data
:param x: input tensor from which to take elements
:param val: value to be compared to by mode
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
v, index = F.cond_take(mask, x, 1)
print(v, index)
Outputs:
.. testoutput::
Tensor([1. 4.]) Tensor([0 3], dtype=int32)
"""
v, index = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val
)
return v, index
def shapeof(x: Tensor, axis=None):
r"""
The shape of input tensor.
"""
return x.shapeof(axis=axis)
@wrap_io_tensor
def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""
Swap shapes and strides according to given pattern
:param inp: Input tensor
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:
* (``'x'``) -> make a 0d (scalar) into a 1d vector
* (0, 1) -> identity for 2d vectors
* (1, 0) -> inverts the first and second dimensions
* (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
* (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
* (2, 0, 1) -> AxBxC to CxAxB
* (0, ``'x'``, 1) -> AxB to Ax1xB
* (1, ``'x'``, 0) -> AxB to Bx1xA
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
out = F.dimshuffle(x, (1, 0))
print(out.numpy())
Outputs:
.. testoutput::
[[1 0]
[1 0]]
"""
return | mgb.opr.dimshuffle(inp, pattern) | megengine._internal.opr.dimshuffle |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = mgb.opr.set_advanced_indexing(out, v)[index]
out = out.reshape(x.shape)
return out
@wrap_io_tensor
def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor:
r"""
Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.
:param mask: condition param; must be the same shape with data
:param x: input tensor from which to take elements
:param val: value to be compared to by mode
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
v, index = F.cond_take(mask, x, 1)
print(v, index)
Outputs:
.. testoutput::
Tensor([1. 4.]) Tensor([0 3], dtype=int32)
"""
v, index = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val
)
return v, index
def shapeof(x: Tensor, axis=None):
r"""
The shape of input tensor.
"""
return x.shapeof(axis=axis)
@wrap_io_tensor
def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""
Swap shapes and strides according to given pattern
:param inp: Input tensor
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:
* (``'x'``) -> make a 0d (scalar) into a 1d vector
* (0, 1) -> identity for 2d vectors
* (1, 0) -> inverts the first and second dimensions
* (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
* (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
* (2, 0, 1) -> AxBxC to CxAxB
* (0, ``'x'``, 1) -> AxB to Ax1xB
* (1, ``'x'``, 0) -> AxB to Bx1xA
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
out = F.dimshuffle(x, (1, 0))
print(out.numpy())
Outputs:
.. testoutput::
[[1 0]
[1 0]]
"""
return mgb.opr.dimshuffle(inp, pattern)
@wrap_io_tensor
def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
r"""
Reshape a tensor to given target shape; total number of logical elements must
remain unchanged
:param inp: Input tensor
:param target_shape: target shape, the components would be concatenated to form the
target shape, and it can contain an element of -1 representing unspec_axis.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(12, dtype=np.int32))
out = F.reshape(x, (3, 2, 2))
print(out.numpy())
Outputs:
.. testoutput::
[[[ 0 1]
[ 2 3]]
[[ 4 5]
[ 6 7]]
[[ 8 9]
[10 11]]]
"""
return | mgb.opr.reshape(inp, target_shape) | megengine._internal.opr.reshape |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = mgb.opr.set_advanced_indexing(out, v)[index]
out = out.reshape(x.shape)
return out
@wrap_io_tensor
def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor:
r"""
Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.
:param mask: condition param; must be the same shape with data
:param x: input tensor from which to take elements
:param val: value to be compared to by mode
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
v, index = F.cond_take(mask, x, 1)
print(v, index)
Outputs:
.. testoutput::
Tensor([1. 4.]) Tensor([0 3], dtype=int32)
"""
v, index = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val
)
return v, index
def shapeof(x: Tensor, axis=None):
r"""
The shape of input tensor.
"""
return x.shapeof(axis=axis)
@wrap_io_tensor
def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""
Swap shapes and strides according to given pattern
:param inp: Input tensor
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:
* (``'x'``) -> make a 0d (scalar) into a 1d vector
* (0, 1) -> identity for 2d vectors
* (1, 0) -> inverts the first and second dimensions
* (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
* (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
* (2, 0, 1) -> AxBxC to CxAxB
* (0, ``'x'``, 1) -> AxB to Ax1xB
* (1, ``'x'``, 0) -> AxB to Bx1xA
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
out = F.dimshuffle(x, (1, 0))
print(out.numpy())
Outputs:
.. testoutput::
[[1 0]
[1 0]]
"""
return mgb.opr.dimshuffle(inp, pattern)
@wrap_io_tensor
def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
r"""
Reshape a tensor to given target shape; total number of logical elements must
remain unchanged
:param inp: Input tensor
:param target_shape: target shape, the components would be concatenated to form the
target shape, and it can contain an element of -1 representing unspec_axis.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(12, dtype=np.int32))
out = F.reshape(x, (3, 2, 2))
print(out.numpy())
Outputs:
.. testoutput::
[[[ 0 1]
[ 2 3]]
[[ 4 5]
[ 6 7]]
[[ 8 9]
[10 11]]]
"""
return mgb.opr.reshape(inp, target_shape)
def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""Equivalent to :func:`dimshuffle`
"""
return dimshuffle(inp, pattern)
@wrap_io_tensor
def add_axis(inp: Tensor, axis: int) -> Tensor:
r"""
Add dimension before given axis.
:param inp: Input tensor
:param axis: Place of new axes
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor([1, 2])
out = F.add_axis(x, 0)
print(out.shape)
Outputs:
.. testoutput::
(1, 2)
"""
if not isinstance(axis, int):
raise ValueError("axis must be int, but got type:{}".format(type(axis)))
return | mgb.opr.add_axis(inp, axis) | megengine._internal.opr.add_axis |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = mgb.opr.set_advanced_indexing(out, v)[index]
out = out.reshape(x.shape)
return out
@wrap_io_tensor
def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor:
r"""
Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.
:param mask: condition param; must be the same shape with data
:param x: input tensor from which to take elements
:param val: value to be compared to by mode
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
v, index = F.cond_take(mask, x, 1)
print(v, index)
Outputs:
.. testoutput::
Tensor([1. 4.]) Tensor([0 3], dtype=int32)
"""
v, index = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val
)
return v, index
def shapeof(x: Tensor, axis=None):
r"""
The shape of input tensor.
"""
return x.shapeof(axis=axis)
@wrap_io_tensor
def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""
Swap shapes and strides according to given pattern
:param inp: Input tensor
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:
* (``'x'``) -> make a 0d (scalar) into a 1d vector
* (0, 1) -> identity for 2d vectors
* (1, 0) -> inverts the first and second dimensions
* (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
* (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
* (2, 0, 1) -> AxBxC to CxAxB
* (0, ``'x'``, 1) -> AxB to Ax1xB
* (1, ``'x'``, 0) -> AxB to Bx1xA
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
out = F.dimshuffle(x, (1, 0))
print(out.numpy())
Outputs:
.. testoutput::
[[1 0]
[1 0]]
"""
return mgb.opr.dimshuffle(inp, pattern)
@wrap_io_tensor
def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
r"""
Reshape a tensor to given target shape; total number of logical elements must
remain unchanged
:param inp: Input tensor
:param target_shape: target shape, the components would be concatenated to form the
target shape, and it can contain an element of -1 representing unspec_axis.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(12, dtype=np.int32))
out = F.reshape(x, (3, 2, 2))
print(out.numpy())
Outputs:
.. testoutput::
[[[ 0 1]
[ 2 3]]
[[ 4 5]
[ 6 7]]
[[ 8 9]
[10 11]]]
"""
return mgb.opr.reshape(inp, target_shape)
def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""Equivalent to :func:`dimshuffle`
"""
return dimshuffle(inp, pattern)
@wrap_io_tensor
def add_axis(inp: Tensor, axis: int) -> Tensor:
r"""
Add dimension before given axis.
:param inp: Input tensor
:param axis: Place of new axes
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor([1, 2])
out = F.add_axis(x, 0)
print(out.shape)
Outputs:
.. testoutput::
(1, 2)
"""
if not isinstance(axis, int):
raise ValueError("axis must be int, but got type:{}".format(type(axis)))
return mgb.opr.add_axis(inp, axis)
@wrap_io_tensor
def remove_axis(inp: Tensor, axis: int) -> Tensor:
r"""
Remove dimension of shape 1.
:param inp: Input tensor
:param axis: Place of axis to be removed
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1))
out = F.remove_axis(x, 3)
print(out.shape)
Outputs:
.. testoutput::
(1, 1, 2)
"""
if not isinstance(axis, int):
raise ValueError("axis must be int, but got type:{}".format(type(axis)))
return | mgb.opr.remove_axis(inp, axis) | megengine._internal.opr.remove_axis |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = | mgb.opr.set_advanced_indexing(out, v) | megengine._internal.opr.set_advanced_indexing |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.advanced_indexing(inp)[idx].reshape(
index.shape
) # pylint: disable=no-member
@wrap_io_tensor
def concat(
inps: Iterable[Tensor],
axis: int = 0,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Concat some tensors
:param inps: Input tensors to concat
:param axis: the dimension over which the tensors are concatenated. Default: 0
:param device: The comp node output on. Default: None
:param comp_graph: The graph in which output is. Default: None
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
out = F.concat([data1, data2])
print(out.numpy())
Outputs:
.. testoutput::
[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
"""
# Output buffer not supported
return mgb.opr.concat(
*list(inps), axis=axis, comp_node=device, comp_graph=comp_graph
)
@wrap_io_tensor
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
r"""
Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.
For each value in :attr:`source`, its output index is specified by its index
in :attr:`source` for ``axis != dimension`` and by the corresponding value in
:attr:`index` for ``axis = dimension``.
For a 3-D tensor, :attr:`inp` is updated as::
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2
:attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
for all dimensions ``d``.
Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.
.. note::
Please notice that, due to performance issues, the result is uncertain on the GPU device
if scatter difference positions from source to the same destination position
regard to index tensor.
Show the case using the following examples, the oup[0][2] is maybe
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
if set the index[1][2] from 1 to 0.
:param inp: the inp tensor which to be scattered
:param axis: the axis along which to index
:param index: the indices of elements to scatter
:param source: the source element(s) to scatter
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
from megengine.core import tensor
inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
oup = F.scatter(inp, 0, index,source)
print(oup.numpy())
Outputs:
.. testoutput::
[[0.9935 0.0718 0.2256 0. 0. ]
[0. 0. 0.5939 0.357 0.4396]
[0.7723 0.9465 0. 0.8926 0.4576]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
source_shape = source.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
source_dims = len(source_shape)
if input_dims != index_dims or input_dims != source_dims:
raise ValueError("The input, source and index tensor must have same dimensions")
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(source_dims):
if source_shape[i] > input_shape[i]:
raise ValueError(
"The each shape size for source {} must be less than or equal to input {} ".format(
source_shape, input_shape
)
)
for i in range(index_dims):
if index_shape[i] != source_shape[i]:
raise ValueError(
"The each shape size for index {} must be equal to source {} ".format(
index_shape, source_shape
)
)
for i in range(index_dims):
if i != axis and index_shape[i] > input_shape[i]:
raise ValueError(
"The index {} must be less than or equal to input {} size apart from axis {}".format(
index_shape, input_shape, axis
)
)
idx = _get_idx(index, axis)
return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx]
@wrap_io_tensor
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r"""
Select elements either from Tensor x or Tensor y, according to mask.
.. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i
:param mask: a mask used for choosing x or y
:param x: the first choice
:param y: the second choice
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
out = F.where(mask, x, y)
print(out.numpy())
Outputs:
.. testoutput::
[[1. 6.]
[7. 4.]]
"""
v0, index0 = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1
)
v1, index1 = mgb.opr.cond_take(
y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0
)
out = x.flatten()
index = mgb.opr.concat(index0, index1, axis=0)
v = mgb.opr.concat(v0, v1, axis=0)
out = mgb.opr.set_advanced_indexing(out, v)[index]
out = out.reshape(x.shape)
return out
@wrap_io_tensor
def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor:
r"""
Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.
:param mask: condition param; must be the same shape with data
:param x: input tensor from which to take elements
:param val: value to be compared to by mode
Examples:
.. testcode::
from megengine import tensor
import megengine.functional as F
mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32))
x = tensor(np.array([[1, np.inf], [np.nan, 4]],
dtype=np.float32))
v, index = F.cond_take(mask, x, 1)
print(v, index)
Outputs:
.. testoutput::
Tensor([1. 4.]) Tensor([0 3], dtype=int32)
"""
v, index = mgb.opr.cond_take(
x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val
)
return v, index
def shapeof(x: Tensor, axis=None):
r"""
The shape of input tensor.
"""
return x.shapeof(axis=axis)
@wrap_io_tensor
def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""
Swap shapes and strides according to given pattern
:param inp: Input tensor
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:
* (``'x'``) -> make a 0d (scalar) into a 1d vector
* (0, 1) -> identity for 2d vectors
* (1, 0) -> inverts the first and second dimensions
* (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
* (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
* (2, 0, 1) -> AxBxC to CxAxB
* (0, ``'x'``, 1) -> AxB to Ax1xB
* (1, ``'x'``, 0) -> AxB to Bx1xA
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
out = F.dimshuffle(x, (1, 0))
print(out.numpy())
Outputs:
.. testoutput::
[[1 0]
[1 0]]
"""
return mgb.opr.dimshuffle(inp, pattern)
@wrap_io_tensor
def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
r"""
Reshape a tensor to given target shape; total number of logical elements must
remain unchanged
:param inp: Input tensor
:param target_shape: target shape, the components would be concatenated to form the
target shape, and it can contain an element of -1 representing unspec_axis.
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(12, dtype=np.int32))
out = F.reshape(x, (3, 2, 2))
print(out.numpy())
Outputs:
.. testoutput::
[[[ 0 1]
[ 2 3]]
[[ 4 5]
[ 6 7]]
[[ 8 9]
[10 11]]]
"""
return mgb.opr.reshape(inp, target_shape)
def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor:
r"""Equivalent to :func:`dimshuffle`
"""
return dimshuffle(inp, pattern)
@wrap_io_tensor
def add_axis(inp: Tensor, axis: int) -> Tensor:
r"""
Add dimension before given axis.
:param inp: Input tensor
:param axis: Place of new axes
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor([1, 2])
out = F.add_axis(x, 0)
print(out.shape)
Outputs:
.. testoutput::
(1, 2)
"""
if not isinstance(axis, int):
raise ValueError("axis must be int, but got type:{}".format(type(axis)))
return mgb.opr.add_axis(inp, axis)
@wrap_io_tensor
def remove_axis(inp: Tensor, axis: int) -> Tensor:
r"""
Remove dimension of shape 1.
:param inp: Input tensor
:param axis: Place of axis to be removed
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
x = tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1))
out = F.remove_axis(x, 3)
print(out.shape)
Outputs:
.. testoutput::
(1, 1, 2)
"""
if not isinstance(axis, int):
raise ValueError("axis must be int, but got type:{}".format(type(axis)))
return mgb.opr.remove_axis(inp, axis)
def linspace(
start: Union[int, float, Tensor],
stop: Union[int, float, Tensor],
num: Union[int, Tensor],
dtype=np.float32,
device: Optional[CompNode] = None,
comp_graph: Optional[CompGraph] = None,
) -> Tensor:
r"""
Return equally spaced numbers over a specified interval
:param start: Starting value of the squence, shoule be scalar
:param stop: The last value of the squence, shoule be scalar
:param num: number of values to generate
:param dtype: result data type
:return: The generated tensor
Examples:
.. testcode::
import numpy as np
import megengine.functional as F
a = F.linspace(3,10,5)
print(a.numpy())
.. testoutput::
[ 3. 4.75 6.5 8.25 10. ]
"""
if dtype is not np.float32:
raise ValueError("linspace is only implemented for float32")
device, comp_graph = _use_default_if_none(device, comp_graph)
ret = Tensor(
| mgb.opr.linspace(start, stop, num, comp_node=device, comp_graph=comp_graph) | megengine._internal.opr.linspace |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
from typing import Iterable, List, Optional, Union
import numpy as np
import megengine._internal as mgb
from megengine._internal import CompGraph, CompNode
from ..core import zeros
from ..core.graph import _use_default_if_none
from ..core.tensor import Tensor, wrap_io_tensor
from .elemwise import ceil
from .utils import _decide_comp_node_and_comp_graph
@wrap_io_tensor
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
"""
Broadcast a tensor to ``shape``
:param inp: The input tensor
:param shape: The target shape
:return: The output tensor
Examples:
.. testcode::
import numpy as np
from megengine import tensor
import megengine.functional as F
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
print(out.numpy())
Outputs:
.. testoutput::
[[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]
[[0. 1. 2.]
[3. 4. 5.]]]
"""
if isinstance(shape, int):
shape = (shape,)
return mgb.opr.broadcast(inp, shape)
def _get_idx(index, axis):
index_dims = len(index.imm_shape)
idx = []
comp_node, comp_graph = _decide_comp_node_and_comp_graph(index)
for i in range(index_dims):
if i != axis:
shape = [1] * index_dims
shape[i] = index.axis_shape(i)
arange = mgb.opr.linspace(
0,
index.axis_shape(i) - 1,
index.axis_shape(i),
comp_node=comp_node,
comp_graph=comp_graph,
)
arange = (
arange.reshape(*shape)
.broadcast(index.shape)
.reshape(-1)
.astype(np.int32)
)
idx.append(arange)
else:
idx.append(index.reshape(-1))
return tuple(idx)
@wrap_io_tensor
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
r"""
Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.
For a 3-D tensor, the output is specified by::
out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2
if :attr:`inp` is an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
then :attr:`index` must be an n-dimensional tensor with size
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
output will have the same size as :attr:`index`.
:param inp: the source tensor
:param axis: the axis along which to index
:param index: the indices of elements to gather
Examples:
.. testcode::
import megengine.functional as F
from megengine.core import tensor
inp = tensor([
[1,2], [3,4], [5,6],
])
index = tensor([[0,2], [1,0]])
oup = F.gather(inp, 0, index)
print(oup.numpy())
Outputs:
.. testoutput::
[[1 6]
[3 2]]
"""
input_shape = inp.imm_shape
index_shape = index.imm_shape
input_dims = len(input_shape)
index_dims = len(index_shape)
if input_dims != index_dims:
raise ValueError(
"The index tensor must have same dimensions as input tensor, "
"But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
)
if axis < 0 or axis >= input_dims:
raise ValueError(
"Index axis {} is output of bounds, should in range [0 {})".format(
axis, input_dims
)
)
for i in range(input_dims):
if i != axis and input_shape[i] != index_shape[i]:
raise ValueError(
"The input {} and index {} must have the same size apart from axis {}".format(
input_shape, index_shape, axis
)
)
idx = _get_idx(index, axis)
return | mgb.opr.advanced_indexing(inp) | megengine._internal.opr.advanced_indexing |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
| enable_expr_checker() | megengine.traced_module.enable_expr_checker |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = | Tensor(1) | megengine.Tensor |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = | trace_module(m1, x) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = | trace_module(m2, x) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = | Tensor(2) | megengine.Tensor |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = | trace_module(m3, a, b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = | trace_module(m4, a, b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = trace_module(m4, a, b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = | trace_module(m4, a, y=b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = trace_module(m4, a, b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = | trace_module(m4, x=a, y=b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = trace_module(m4, a, b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, x=a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm5 = | trace_module(tm4, a, b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = trace_module(m4, a, b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, x=a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm5 = trace_module(tm4, a, b)
np.testing.assert_equal(tm5(a, b).numpy(), 3)
np.testing.assert_equal(tm5(a, y=b).numpy(), 3)
np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3)
tm5 = | trace_module(tm4, a, y=b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = Tensor([1, x, 1])
y += 1
x = x + 2
return x, y
class MyModule3(M.Module):
def __init__(self):
super().__init__()
self.modules = [
M.Elemwise("ADD"),
M.Elemwise("ADD"),
OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU"),
M.Elemwise("RELU"),
]
def forward(self, a, b):
x = self.modules[0](a, b)
y = self.modules[1](a, b)
assert list(self.modules[2].keys()) == ["a", "b"]
for _, m in self.modules[2].items():
y = m(x, y)
for m in self.modules[3:]:
y = m(y)
return y
class MyModule4(M.Module):
def __init__(self):
super().__init__()
self.add = F.add
def forward(self, x, y):
return self.add(x, y)
def test_trace_module():
enable_expr_checker()
x = Tensor(1)
m1 = MyModule1()
tm1 = trace_module(m1, x)
m2 = MyModule2()
tm2 = trace_module(m2, x)
inp = Tensor(2)
gt = m1(inp)
output = tm1(inp)
for a, b in zip(output, gt):
np.testing.assert_equal(a.numpy(), b.numpy())
gt1 = m2(inp)
output1 = tm2(inp)
for a, b in zip(output1, gt1):
np.testing.assert_equal(a.numpy(), b.numpy())
a, b = Tensor(1), Tensor(2)
m3 = MyModule3()
gt = m3(a, b)
tm3 = trace_module(m3, a, b)
out = tm3(a, b)
np.testing.assert_equal(out.numpy(), gt.numpy())
assert isinstance(tm3.modules.__dict__["0"], M.Elemwise)
assert isinstance(tm3.modules.__dict__["2"], TracedModule)
assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise)
assert isinstance(tm3.modules.__dict__["3"], M.Elemwise)
m4 = MyModule4()
tm4 = trace_module(m4, a, b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm4 = trace_module(m4, x=a, y=b)
np.testing.assert_equal(tm4(a, b).numpy(), 3)
np.testing.assert_equal(tm4(a, y=b).numpy(), 3)
np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3)
tm5 = trace_module(tm4, a, b)
np.testing.assert_equal(tm5(a, b).numpy(), 3)
np.testing.assert_equal(tm5(a, y=b).numpy(), 3)
np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3)
tm5 = trace_module(tm4, a, y=b)
np.testing.assert_equal(tm5(a, b).numpy(), 3)
np.testing.assert_equal(tm5(a, y=b).numpy(), 3)
np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3)
tm5 = | trace_module(tm4, x=a, y=b) | megengine.traced_module.trace_module |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = | Tensor(x) | megengine.Tensor |
from collections import OrderedDict
import numpy as np
import megengine.functional as F
import megengine.module as M
from megengine import Tensor
from megengine.core._imperative_rt.core2 import apply
from megengine.core.ops import builtin
from megengine.module import Module
from megengine.traced_module import TracedModule, enable_expr_checker, trace_module
from megengine.traced_module.expr import Apply, CallFunction, Constant
class MyModule1(M.Module):
def forward(self, x):
y = Tensor(x)
y += 1
x = x + 2
return x, y
class MyModule2(M.Module):
def forward(self, x):
y = | Tensor([1, x, 1]) | megengine.Tensor |