SMILES
stringlengths
4
186
Y
class label
2 classes
CC(C)NC[C@H](O)c1ccc(O)c(O)c1
0negative
CCCN(CCC)S(=O)(=O)c1ccc(C(=O)O)cc1
1positive
CCOC(=O)O[C@]1(C(=O)OCCl)CCC2C3CCC4=CC(=O)C=C[C@]4(C)C3C(O)C[C@@]21C
0negative
COC(=O)c1ccccc1O
0negative
Cc1ccccc1OC[C@H](O)CO
0negative
Cc1cccc(C)c1OC[C@H](C)N
1positive
CC[N+](CC)(CC)CCOc1cccc(OCC[N+](CC)(CC)CC)c1OCC[N+](CC)(CC)CC
0negative
O=C(O)[C@H](O)c1ccccc1
0negative
C/N=C(\NC)NCc1ccccc1
0negative
CC1CC2C3C(Cl)CC4=CC(=O)C=C[C@]4(C)C3C(O)C[C@]2(C)[C@@]1(O)C(=O)CO
0negative
CC(=O)N(C[C@H](O)CO)c1c(I)c(C(=O)NCCO)c(I)c(C(=O)NC[C@H](O)CO)c1I
0negative
Oc1ccccc1
1positive
CCCCOCCOC(=O)c1cccnc1
0negative
COc1ccccc1O
0negative
CNC[C@H](O)c1ccc(O)c(O)c1
0negative
O=C(OCCO)c1ccccc1O
0negative
O=C(NCCO[N+](=O)[O-])c1cccnc1
0negative
COc1ccc(OC)c([C@H](O)CNC(=O)CN)c1
0negative
NC(=O)OCC(COC(N)=O)c1ccccc1
1positive
CCN(CC)c1ccc(N)cc1
1positive
COc1ccccc1NC(=O)/C(N=O)=C(/C)O
0negative
CCOC(=O)/C=C/c1ccc(O)c(OC)c1
0negative
Oc1cccc(O)c1
0negative
CNCCc1ccccn1
0negative
NNC(=O)c1ccncc1
1positive
CC1CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@]2(C)[C@@]1(O)C(=O)COP(=O)(O)O
0negative
C[C@H](N)[C@H](O)c1cccc(O)c1
0negative
C[C@]12C=CC(=O)C=C1CCC1C2C(O)C[C@@]2(C)C1CC[C@]2(O)C(=O)OCCl
0negative
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(C(=O)OCCBr)c35)[nH]c2c(OC)c1OC
1positive
COc1cc(CNC(=O)CCCC/C=C\C(C)C)ccc1O
0negative
CC(C)N[C@H](C)Cc1ccc(I)cc1
0negative
CCCCNc1ccc(C(=O)OCCOCCOCCOCCOCCOCCOCCOCCOCCOC)cc1
0negative
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(CO)c35)[nH]c2c(OC)c1OC
1positive
Cc1ccc(C(C)C)c(O)c1
0negative
N[C@H](C(=O)O)[C@H](O)c1ccc(O)c(O)c1
0negative
CCCCCCCCCCCCCCCC[N+](C)(C)Cc1ccccc1
0negative
OCCOc1ccccc1
0negative
CCCCCCCN(CC)CCC[C@H](O)c1ccc(NS(C)(=O)=O)cc1
0negative
Nc1ccncc1
0negative
CNC(=O)c1c(I)c(NC(C)=O)c(I)c(C(=O)O)c1I
0negative
CN(C(=O)CO)c1c(I)c(C(=O)NC[C@H](O)CO)c(I)c(C(=O)NC[C@H](O)CO)c1I
0negative
CN(C)CCN1C(=O)c2cccc3cccc(c23)C1=O
1positive
CCCC(=O)O[C@]1(C(=O)COC(C)=O)CCC2C3CC(F)C4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@@]21C
0negative
CN[C@H](C)Cc1ccccc1OC
0negative
CCCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C
0negative
CCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3CC[C@@]21C
0negative
CC(=O)N(C[C@H](C)C(=O)O)c1c(I)cc(I)c(N)c1I
0negative
CC[N+](C)(C)c1cccc(O)c1
0negative
NC(=O)OC[C@H](N)Cc1ccccc1
0negative
O=C/C=C/c1ccccc1
0negative
N#Cc1cc(NC(=O)C(=O)O)c(Cl)c(NC(=O)C(=O)O)c1
0negative
O=[N+]([O-])c1cc([N+](=O)[O-])c(S(=O)(=O)[O-])c([N+](=O)[O-])c1
1positive
CC(=O)C1CCC2C3CC(C)C4=CC(=O)CC[C@]4(C)C3C(O)C[C@]12C
0negative
NC(=O)c1ccccc1O
0negative
CN(C)CCN1C(=O)c2cccc3cc(NC(=O)NCCCl)cc(c23)C1=O
1positive
OCc1ccccc1
0negative
CC(=O)Oc1ccccc1C(=O)O
1positive
CCCCCCCCCCCC[N+](C)(C)Cc1ccccc1
0negative
CCCC[C@@H](CC)COC(=O)c1ccc(N(C)C)cc1
0negative
CC(=O)Nc1ccc(O)cc1
1positive
CC(=O)Oc1cc(C(C)C)c(OCCN(C)C)cc1C
0negative
O=C(O)Cc1ccccc1
0negative
CC(=O)Nc1c(I)c(C(=O)O)c(I)c(N(C)C(C)=O)c1I
0negative
CN(C)C(=O)Oc1cccc([N+](C)(C)C)c1
0negative
CC1CC2C3CC(F)C4=CC(=O)C=C[C@]4(C)[C@@]3(Cl)C(O)C[C@]2(C)C1C(=O)CO
0negative
CC(C)(C)NC[C@H](O)c1cc(Cl)c(N)c(Cl)c1
0negative
CCC(=O)OCC(=O)[C@@]1(OC(=O)CC)C(C)CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(Cl)C(O)C[C@@]21C
0negative
CC1CC2C(C(O)C[C@@]3(C)C2CC[C@]3(O)C(=O)COC(=O)CCC(=O)O)[C@@]2(C)C=CC(=O)C=C12
0negative
CC(C)NC[C@H](O)c1cc(O)cc(O)c1
0negative
C[C@]12C=CC(=O)C=C1CCC1C3CC(O)[C@](O)(C(=O)CO)[C@@]3(C)CC(O)[C@@]12F
0negative
CCCCCC(=O)O[C@]1(C(C)=O)CCC2C3CCC4=CC(=O)CCC4C3CC[C@@]21C
0negative
CC(=O)Nc1ccccc1
1positive
CC(=O)OCC(=O)[C@@]1(O)C(C)CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@@]21C
0negative
CCCN[C@@H](C)C(=O)Nc1ccccc1C
0negative
CC1CC2C3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)C(O)C[C@]2(C)[C@@]1(O)C(=O)CCl
0negative
O=S(=O)([O-])c1ccc(O)cc1
0negative
COCCO[C@H](C)C/N=C(\O)c1ccccc1OCC(=O)[O-]
0negative
CCCC(=O)O[C@]1(C(=O)COC(=O)CC)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C
0negative
Clc1ccc([C@@H](c2ccccc2Cl)C(Cl)Cl)cc1
1positive
C[C@]12CCC(=O)C=C1CCC1C2C(O)C[C@@]2(C)C1CC[C@]2(O)C(=O)CO
0negative
O=C(O)CNC(=O)CNC(=O)CNC(=O)CSC(=O)c1ccccc1
0negative
CC(C)(C)NC[C@H](O)c1ccc(O)c(CO)n1
0negative
CCCCCCCCCCCCCCCC(=O)OC[C@@H](NC(=O)C(Cl)Cl)[C@H](O)c1ccc([N+](=O)[O-])cc1
0negative
CCN(CC)CC(=O)OCC(=O)[C@@]1(O)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C
0negative
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(Cl)c35)[nH]c2c(OC)c1OC
1positive
NNCCc1ccccc1
0negative
COc1cc2cc(C(=O)N3C[C@H]4C[C@@]45C3=CC(=O)c3[nH]c(C)c(C(=O)O)c35)[nH]c2c(OC)c1OC
1positive
Nc1ccc(O)c(C(=O)O)c1
1positive
O=C(O)CCC(=O)OC[C@@H](NC(=O)C(Cl)Cl)[C@H](O)c1ccc([N+](=O)[O-])cc1
0negative
NCCc1ccc(O)c(O)c1
0negative
CCC(=O)C(C[C@H](C)N(C)C)(c1ccccc1)c1ccccc1
0negative
CNC(C)(C)Cc1ccccc1
0negative
CCCCC(=O)O[C@]1(C(=O)CO)CCC2C3CCC4=CC(=O)CC[C@]4(C)C3C(O)C[C@@]21C
0negative
COc1ccccc1OC[C@H](O)CO
0negative
CC[C@@H](c1cccc(O)c1)[C@@H](C)CN(C)C
0negative
COC(=O)c1c(C)[nH]c2c1[C@@]13C[C@@H]1CN(C(=O)c1cc4cc(OC)c(OC)c(OC)c4[nH]1)C3=CC2=O
1positive
CC[N+](C)(C)Cc1ccccc1Br
0negative
CN(C)CCN1C(=O)c2cccc3cc(NC=O)cc(c23)C1=O
1positive
CC(C)c1cccc(C(C)C)c1O
0negative
CN[C@H](C)Cc1ccccc1
0negative

Hematotoxicity Dataset (HematoxLong2023)

A hematotoxicity dataset containing 1772 chemicals was obtained, which includes a positive set with 589 molecules and a negative set with 1183 molecules. The molecules were divided into a training set of 1330 molecules and a test set of 442 molecules according to their Murcko scaffolds. Additionally, 610 new molecules from related research and databases were compiled as the external validation set.

The train and test datasets uploaded to our Hugging Face repository have been sanitized and split from the original dataset, which contains 2382 molecules. If you would like to try these processes with the original dataset, please follow the instructions in the Preprocessing Script.py file located in the HematoxLong2023.

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load one of the HematoxLong2023 datasets, e.g.,

>>> HematoxLong2023 = datasets.load_dataset("maomlab/HematoxLong2023", name = "HematoxLong2023")
Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.23k/5.23k [00:00<00:00, 35.1kkB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 34.5k//34.5k/ [00:00<00:00, 155kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 97.1k/97.1k [00:00<00:00, 587kB/s]
Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 594/594 [00:00<00:00, 12705.92 examples/s]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1788/1788 [00:00<00:00, 43895.91 examples/s]

and inspecting the loaded dataset

>>> HematoxLong2023
HematoxLong2023
DatasetDict({
  test: Dataset({
     features: ['SMILES', 'Y'],
     num_rows: 594
  })
  train: Dataset({
      features: ['SMILES', 'Y'],
      num_rows: 1788
  })    
})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

Split and evaluate the catboost model

split_dataset = load_dataset('maomlab/HematoxLong2023', name = 'HematoxLong2023')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y']}})

model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
    references=split_featurised_dataset["test"]['Y'],
    predictions=preds["cat_boost_classifier::Y"])        

Citation

Cite this: J. Chem. Inf. Model. 2023, 63, 1, 111–125 Publication Date:December 6, 2022 https://doi.org/10.1021/acs.jcim.2c01088 Copyright Β© 2024 American Chemical Society

Downloads last month
66
Edit dataset card

Collection including maomlab/HematoxLong2023