Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
libritts_r / README.md
brthor's picture
Update README.md
0d1718d verified
metadata
license: cc-by-4.0
task_categories:
  - text-to-speech
language:
  - en
size_categories:
  - 10K<n<100K
configs:
  - config_name: dev
    data_files:
      - split: dev.clean
        path: data/dev.clean/dev.clean*.parquet
  - config_name: clean
    data_files:
      - split: dev.clean
        path: data/dev.clean/dev.clean*.parquet
      - split: test.clean
        path: data/test.clean/test.clean*.parquet
      - split: train.clean.100
        path: data/train.clean.100/train.clean.100*.parquet
      - split: train.clean.360
        path: data/train.clean.360/train.clean.360*.parquet
  - config_name: other
    data_files:
      - split: dev.other
        path: data/dev.other/dev.other*.parquet
      - split: test.other
        path: data/test.other/test.other*.parquet
      - split: train.other.500
        path: data/train.other.500/train.other.500*.parquet
  - config_name: all
    data_files:
      - split: dev.clean
        path: data/dev.clean/dev.clean*.parquet
      - split: dev.other
        path: data/dev.other/dev.other*.parquet
      - split: test.clean
        path: data/test.clean/test.clean*.parquet
      - split: test.other
        path: data/test.other/test.other*.parquet
      - split: train.clean.100
        path: data/train.clean.100/train.clean.100*.parquet
      - split: train.clean.360
        path: data/train.clean.360/train.clean.360*.parquet
      - split: train.other.500
        path: data/train.other.500/train.other.500*.parquet

Dataset Card for LibriTTS-R

LibriTTS-R [1] is a sound quality improved version of the LibriTTS corpus (http://www.openslr.org/60/) which is a multi-speaker English corpus of approximately 585 hours of read English speech at 24kHz sampling rate, published in 2019.

Overview

This is the LibriTTS-R dataset, adapted for the datasets library.

Usage

Splits

There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):

  • dev.clean
  • dev.other
  • test.clean
  • test.other
  • train.clean.100
  • train.clean.360
  • train.other.500

Configurations

There are 3 configurations, each which limits the splits the load_dataset() function will download.

The default configuration is "all".

  • "dev": only the "dev.clean" split (good for testing the dataset quickly)
  • "clean": contains only "clean" splits
  • "other": contains only "other" splits
  • "all": contains only "all" splits

Example

Loading the clean config with only the train.clean.360 split.

load_dataset("blabble-io/libritts_r", "clean", split="train.clean.100")

Streaming is also supported.

load_dataset("blabble-io/libritts_r", streaming=True)

Columns

{
    "audio": datasets.Audio(sampling_rate=24_000),
    "text_normalized": datasets.Value("string"),
    "text_original": datasets.Value("string"),
    "speaker_id": datasets.Value("string"),
    "path": datasets.Value("string"),
    "chapter_id": datasets.Value("string"),
    "id": datasets.Value("string"),
}

Example Row

{
  'audio': {
    'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav', 
    'array': ..., 
    'sampling_rate': 24000
  }, 
  'text_normalized': 'How quickly he disappeared!"',
  'text_original': 'How quickly he disappeared!"',
  'speaker_id': '3081', 
  'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav', 
  'chapter_id': '166546', 
  'id': '3081_166546_000028_000002'
}

Dataset Details

Dataset Description

  • License: CC BY 4.0

Dataset Sources [optional]

Citation

@ARTICLE{Koizumi2023-hs,
  title         = "{LibriTTS-R}: A restored multi-speaker text-to-speech corpus",
  author        = "Koizumi, Yuma and Zen, Heiga and Karita, Shigeki and Ding,
                   Yifan and Yatabe, Kohei and Morioka, Nobuyuki and Bacchiani,
                   Michiel and Zhang, Yu and Han, Wei and Bapna, Ankur",
  abstract      = "This paper introduces a new speech dataset called
                   ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is
                   derived by applying speech restoration to the LibriTTS
                   corpus, which consists of 585 hours of speech data at 24 kHz
                   sampling rate from 2,456 speakers and the corresponding
                   texts. The constituent samples of LibriTTS-R are identical
                   to those of LibriTTS, with only the sound quality improved.
                   Experimental results show that the LibriTTS-R ground-truth
                   samples showed significantly improved sound quality compared
                   to those in LibriTTS. In addition, neural end-to-end TTS
                   trained with LibriTTS-R achieved speech naturalness on par
                   with that of the ground-truth samples. The corpus is freely
                   available for download from
                   \textbackslashurl\{http://www.openslr.org/141/\}.",
  month         =  may,
  year          =  2023,
  copyright     = "http://creativecommons.org/licenses/by-nc-nd/4.0/",
  archivePrefix = "arXiv",
  primaryClass  = "eess.AS",
  eprint        = "2305.18802"
}