|
|
|
|
|
""" |
|
Plan: |
|
Read in "dictionary" for list of words |
|
Read in pre-calculated "proper" embedding for each word from safetensor file |
|
Prompt user for a word from the list |
|
Generate a tensor array of distance to all the other known words |
|
Print out the 20 closest ones |
|
""" |
|
|
|
|
|
import sys |
|
import torch |
|
from safetensors import safe_open |
|
|
|
from transformers import CLIPProcessor,CLIPModel, CLIPTextModelWithProjection |
|
|
|
processor=None |
|
tmodel2=None |
|
model_path2=None |
|
model_config2=None |
|
|
|
if len(sys.argv) == 4: |
|
model_path2=sys.argv[1] |
|
model_config2=sys.argv[2] |
|
embed_file=sys.argv[3] |
|
else: |
|
print("You have to give name of textencoder modelfile,config file, and embeddings file") |
|
sys.exit(1) |
|
|
|
device=torch.device("cuda") |
|
|
|
|
|
def init(): |
|
global tmodel2,processor |
|
|
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
print("loading",model_path) |
|
tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True) |
|
tmodel2.to(device) |
|
|
|
|
|
|
|
print("read in words from dictionary now",file=sys.stderr) |
|
with open("dictionary","r") as f: |
|
tokendict = f.readlines() |
|
wordlist = [token.strip() for token in tokendict] |
|
print(len(wordlist),"lines read") |
|
|
|
print("read in embeddings now",file=sys.stderr) |
|
model = safe_open(embed_file,framework="pt",device="cuda") |
|
embs=model.get_tensor("embeddings") |
|
embs.to(device) |
|
print("Shape of loaded embeds =",embs.shape) |
|
|
|
def standard_embed_calc(text): |
|
global processor,tmodel2 |
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = tmodel2(**inputs) |
|
embeddings = outputs.text_embeds |
|
return embeddings[0] |
|
|
|
|
|
def print_distances(targetemb): |
|
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2) |
|
|
|
print("shape of distances...",targetdistances.shape) |
|
|
|
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False) |
|
|
|
smallest_distances=smallest_distances.tolist() |
|
smallest_indices=smallest_indices.tolist() |
|
for d,i in zip(smallest_distances,smallest_indices): |
|
print(wordlist[i],"(",d,")") |
|
|
|
|
|
|
|
|
|
|
|
def find_closest(targetword): |
|
try: |
|
targetindex=wordlist.index(targetword) |
|
targetemb=embs[targetindex] |
|
print_distances(targetemb) |
|
return |
|
except ValueError: |
|
print(targetword,"not found in cache") |
|
|
|
|
|
print("Now doing with full calc embed") |
|
targetemb=standard_embed_calc(targetword) |
|
print_distances(targetemb) |
|
|
|
|
|
while True: |
|
input_text=input("Input a word now:") |
|
find_closest(input_text) |
|
|