Datasets:
license: cc-by-sa-4.0
task_categories:
- text-generation
language:
- sr
- hr
- bs
tags:
- webdataset
pretty_name: Umbrella corp.
size_categories:
- 10B<n<100B
Kišobran - krovni veb korpus srpskog i srpskohrvatskog jezikaNajveća agregacija veb korpusa do sada, neophodna za obučavanje velikih jezičkih modela za srpski jezik. Ukupno x dokumenata, ukupno sa preko 20 milijardi reči. Svaka linija predstavlja novi dokument Rečenice unutar dokumenata su obeležene. Sadrži obrađene i deduplikovane verzije sledećih korpusa:Deduplikacija je izvršena pomoću alata onion korišćenjem pretrage 6-torki i pragom dedumplikacije 75%. |
Umbrella corp. - umbrella web corpus of Serbian and Serbo-CroatianThe largest aggregation of web corpora so far, necessary for training Serbian large language models. A total of x documents containing over 20 billion words. Each line represents a document. Each Sentence in a document is delimited. Contains processed and deduplicated versions of the following corpora:The dataset was deduplicated using onion using 6-tuples search and a duplicate threshold of 75%. |
Load complete dataset / Učitavanje kopletnog dataseta
from datasets import load_dataset
dataset = load_dataset("procesaur/umbrella")
Load a specific language / Učitavanje pojedinačnih jezika
from datasets import load_dataset
dataset_sr = load_dataset("procesaur/umbrella", "sr")
dataset_cnr = load_dataset("procesaur/umbrella", "cnr")
dataset_hr = load_dataset("procesaur/umbrella", "hr")
dataset_bs = load_dataset("procesaur/umbrella", "bs")
Citation:
@article{skoric24korpusi,
author = {\vSkori\'c, Mihailo and Jankovi\'c, Nikola},
title = {New Textual Corpora for Serbian Language Modeling},
journal = {Infotheca},
volume = {24},
issue = {1},
year = {2024},
publisher = {Zajednica biblioteka univerziteta u Srbiji, Beograd}
}
Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA. |
This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA. |