task_id
int32 511
974
| source
stringlengths 149
914
| task_source
stringclasses 1
value | task_name
stringclasses 1
value | target
stringlengths 30
908
| split
stringclasses 2
values |
---|---|---|---|---|---|
601 | Instruct: Write a function to find the longest chain which can be formed from the given set of pairs.
>>> assert max_chain_length([Pair(5, 24), Pair(15, 25),Pair(27, 40), Pair(50, 60)], 4) == 3
>>> assert max_chain_length([Pair(1, 2), Pair(3, 4),Pair(5, 6), Pair(7, 8)], 4) == 4
>>> assert max_chain_length([Pair(19, 10), Pair(11, 12),Pair(13, 14), Pair(15, 16), Pair(31, 54)], 5) == 5
Answer: | mbpp | mbpp | class Pair(object):
def __init__(self, a, b):
self.a = a
self.b = b
def max_chain_length(arr, n):
max = 0
mcl = [1 for i in range(n)]
for i in range(1, n):
for j in range(0, i):
if (arr[i].a > arr[j].b and
mcl[i] < mcl[j] + 1):
mcl[i] = mcl[j] + 1
for i in range(n):
if (max < mcl[i]):
max = mcl[i]
return max | train |
602 | Instruct: Write a python function to find the first repeated character in a given string.
>>> assert first_repeated_char("abcabc") == "a"
>>> assert first_repeated_char("abc") == "None"
>>> assert first_repeated_char("123123") == "1"
Answer: | mbpp | mbpp | def first_repeated_char(str1):
for index,c in enumerate(str1):
if str1[:index+1].count(c) > 1:
return c
return "None" | train |
603 | Instruct: Write a function to get a lucid number smaller than or equal to n.
>>> assert get_ludic(10) == [1, 2, 3, 5, 7]
>>> assert get_ludic(25) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25]
>>> assert get_ludic(45) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43]
Answer: | mbpp | mbpp | def get_ludic(n):
ludics = []
for i in range(1, n + 1):
ludics.append(i)
index = 1
while(index != len(ludics)):
first_ludic = ludics[index]
remove_index = index + first_ludic
while(remove_index < len(ludics)):
ludics.remove(ludics[remove_index])
remove_index = remove_index + first_ludic - 1
index += 1
return ludics | train |
604 | Instruct: Write a function to reverse words in a given string.
>>> assert reverse_words("python program")==("program python")
>>> assert reverse_words("java language")==("language java")
>>> assert reverse_words("indian man")==("man indian")
Answer: | mbpp | mbpp | def reverse_words(s):
return ' '.join(reversed(s.split())) | train |
605 | Instruct: Write a function to check if the given integer is a prime number.
>>> assert prime_num(13)==True
>>> assert prime_num(7)==True
>>> assert prime_num(-1010)==False
Answer: | mbpp | mbpp | def prime_num(num):
if num >=1:
for i in range(2, num//2):
if (num % i) == 0:
return False
else:
return True
else:
return False | train |
606 | Instruct: Write a function to convert degrees to radians.
>>> assert radian_degree(90)==1.5707963267948966
>>> assert radian_degree(60)==1.0471975511965976
>>> assert radian_degree(120)==2.0943951023931953
Answer: | mbpp | mbpp | import math
def radian_degree(degree):
radian = degree*(math.pi/180)
return radian | train |
607 | Instruct: Write a function to search a literals string in a string and also find the location within the original string where the pattern occurs by using regex.
>>> assert find_literals('The quick brown fox jumps over the lazy dog.', 'fox') == ('fox', 16, 19)
>>> assert find_literals('Its been a very crazy procedure right', 'crazy') == ('crazy', 16, 21)
>>> assert find_literals('Hardest choices required strongest will', 'will') == ('will', 35, 39)
Answer: | mbpp | mbpp | import re
pattern = 'fox'
text = 'The quick brown fox jumps over the lazy dog.'
def find_literals(text, pattern):
match = re.search(pattern, text)
s = match.start()
e = match.end()
return (match.re.pattern, s, e) | train |
608 | Instruct: Write a python function to find nth bell number.
>>> assert bell_Number(2) == 2
>>> assert bell_Number(3) == 5
>>> assert bell_Number(4) == 15
Answer: | mbpp | mbpp | def bell_Number(n):
bell = [[0 for i in range(n+1)] for j in range(n+1)]
bell[0][0] = 1
for i in range(1, n+1):
bell[i][0] = bell[i-1][i-1]
for j in range(1, i+1):
bell[i][j] = bell[i-1][j-1] + bell[i][j-1]
return bell[n][0] | train |
609 | Instruct: Write a python function to find minimum possible value for the given periodic function.
>>> assert floor_Min(10,20,30) == 15
>>> assert floor_Min(1,2,1) == 0
>>> assert floor_Min(11,10,9) == 9
Answer: | mbpp | mbpp | def floor_Min(A,B,N):
x = max(B - 1,N)
return (A*x) // B | train |
610 | Instruct: Write a python function to remove the k'th element from a given list.
>>> assert remove_kth_element([1,1,2,3,4,4,5,1],3)==[1, 1, 3, 4, 4, 5, 1]
>>> assert remove_kth_element([0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4],4)==[0, 0, 1, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4]
>>> assert remove_kth_element([10, 10, 15, 19, 18, 18, 17, 26, 26, 17, 18, 10],5)==[10,10,15,19, 18, 17, 26, 26, 17, 18, 10]
Answer: | mbpp | mbpp | def remove_kth_element(list1, L):
return list1[:L-1] + list1[L:] | train |
611 | Instruct: Write a function to find the maximum of nth column from the given tuple list.
>>> assert max_of_nth([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) == 19
>>> assert max_of_nth([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) == 10
>>> assert max_of_nth([(7, 8, 9), (3, 5, 7), (10, 11, 21)], 1) == 11
Answer: | mbpp | mbpp | def max_of_nth(test_list, N):
res = max([sub[N] for sub in test_list])
return (res) | train |
612 | Instruct: Write a python function to merge the first and last elements separately in a list of lists.
>>> assert merge([['x', 'y'], ['a', 'b'], ['m', 'n']]) == [['x', 'a', 'm'], ['y', 'b', 'n']]
>>> assert merge([[1, 2], [3, 4], [5, 6], [7, 8]]) == [[1, 3, 5, 7], [2, 4, 6, 8]]
>>> assert merge([['x', 'y','z' ], ['a', 'b','c'], ['m', 'n','o']]) == [['x', 'a', 'm'], ['y', 'b', 'n'],['z', 'c','o']]
Answer: | mbpp | mbpp | def merge(lst):
return [list(ele) for ele in list(zip(*lst))] | train |
613 | Instruct: Write a function to find the maximum value in record list as tuple attribute in the given tuple list.
>>> assert maximum_value([('key1', [3, 4, 5]), ('key2', [1, 4, 2]), ('key3', [9, 3])]) == [('key1', 5), ('key2', 4), ('key3', 9)]
>>> assert maximum_value([('key1', [4, 5, 6]), ('key2', [2, 5, 3]), ('key3', [10, 4])]) == [('key1', 6), ('key2', 5), ('key3', 10)]
>>> assert maximum_value([('key1', [5, 6, 7]), ('key2', [3, 6, 4]), ('key3', [11, 5])]) == [('key1', 7), ('key2', 6), ('key3', 11)]
Answer: | mbpp | mbpp | def maximum_value(test_list):
res = [(key, max(lst)) for key, lst in test_list]
return (res) | train |
614 | Instruct: Write a function to find the cumulative sum of all the values that are present in the given tuple list.
>>> assert cummulative_sum([(1, 3), (5, 6, 7), (2, 6)]) == 30
>>> assert cummulative_sum([(2, 4), (6, 7, 8), (3, 7)]) == 37
>>> assert cummulative_sum([(3, 5), (7, 8, 9), (4, 8)]) == 44
Answer: | mbpp | mbpp | def cummulative_sum(test_list):
res = sum(map(sum, test_list))
return (res) | train |
615 | Instruct: Write a function to find average value of the numbers in a given tuple of tuples.
>>> assert average_tuple(((10, 10, 10, 12), (30, 45, 56, 45), (81, 80, 39, 32), (1, 2, 3, 4)))==[30.5, 34.25, 27.0, 23.25]
>>> assert average_tuple(((1, 1, -5), (30, -15, 56), (81, -60, -39), (-10, 2, 3)))== [25.5, -18.0, 3.75]
>>> assert average_tuple( ((100, 100, 100, 120), (300, 450, 560, 450), (810, 800, 390, 320), (10, 20, 30, 40)))==[305.0, 342.5, 270.0, 232.5]
Answer: | mbpp | mbpp | def average_tuple(nums):
result = [sum(x) / len(x) for x in zip(*nums)]
return result | train |
616 | Instruct: Write a function to perfom the modulo of tuple elements in the given two tuples.
>>> assert tuple_modulo((10, 4, 5, 6), (5, 6, 7, 5)) == (0, 4, 5, 1)
>>> assert tuple_modulo((11, 5, 6, 7), (6, 7, 8, 6)) == (5, 5, 6, 1)
>>> assert tuple_modulo((12, 6, 7, 8), (7, 8, 9, 7)) == (5, 6, 7, 1)
Answer: | mbpp | mbpp | def tuple_modulo(test_tup1, test_tup2):
res = tuple(ele1 % ele2 for ele1, ele2 in zip(test_tup1, test_tup2))
return (res) | train |
617 | Instruct: Write a function to check for the number of jumps required of given length to reach a point of form (d, 0) from origin in a 2d plane.
>>> assert min_Jumps(3,4,11)==3.5
>>> assert min_Jumps(3,4,0)==0
>>> assert min_Jumps(11,14,11)==1
Answer: | mbpp | mbpp | def min_Jumps(a, b, d):
temp = a
a = min(a, b)
b = max(temp, b)
if (d >= b):
return (d + b - 1) / b
if (d == 0):
return 0
if (d == a):
return 1
else:
return 2 | train |
618 | Instruct: Write a function to divide two lists using map and lambda function.
>>> assert div_list([4,5,6],[1, 2, 3])==[4.0,2.5,2.0]
>>> assert div_list([3,2],[1,4])==[3.0, 0.5]
>>> assert div_list([90,120],[50,70])==[1.8, 1.7142857142857142]
Answer: | mbpp | mbpp | def div_list(nums1,nums2):
result = map(lambda x, y: x / y, nums1, nums2)
return list(result) | train |
619 | Instruct: Write a function to move all the numbers in it to the given string.
>>> assert move_num('I1love143you55three3000thousand') == 'Iloveyouthreethousand1143553000'
>>> assert move_num('Avengers124Assemble') == 'AvengersAssemble124'
>>> assert move_num('Its11our12path13to14see15things16do17things') == 'Itsourpathtoseethingsdothings11121314151617'
Answer: | mbpp | mbpp | def move_num(test_str):
res = ''
dig = ''
for ele in test_str:
if ele.isdigit():
dig += ele
else:
res += ele
res += dig
return (res) | train |
620 | Instruct: Write a function to find the largest subset where each pair is divisible.
>>> assert largest_subset([ 1, 3, 6, 13, 17, 18 ], 6) == 4
>>> assert largest_subset([10, 5, 3, 15, 20], 5) == 3
>>> assert largest_subset([18, 1, 3, 6, 13, 17], 6) == 4
Answer: | mbpp | mbpp | def largest_subset(a, n):
dp = [0 for i in range(n)]
dp[n - 1] = 1;
for i in range(n - 2, -1, -1):
mxm = 0;
for j in range(i + 1, n):
if a[j] % a[i] == 0 or a[i] % a[j] == 0:
mxm = max(mxm, dp[j])
dp[i] = 1 + mxm
return max(dp) | train |
621 | Instruct: Write a function to increment the numeric values in the given strings by k.
>>> assert increment_numerics(["MSM", "234", "is", "98", "123", "best", "4"] , 6) == ['MSM', '240', 'is', '104', '129', 'best', '10']
>>> assert increment_numerics(["Dart", "356", "is", "88", "169", "Super", "6"] , 12) == ['Dart', '368', 'is', '100', '181', 'Super', '18']
>>> assert increment_numerics(["Flutter", "451", "is", "44", "96", "Magnificent", "12"] , 33) == ['Flutter', '484', 'is', '77', '129', 'Magnificent', '45']
Answer: | mbpp | mbpp | def increment_numerics(test_list, K):
res = [str(int(ele) + K) if ele.isdigit() else ele for ele in test_list]
return res | train |
622 | Instruct: Write a function to find the median of two sorted arrays of same size.
>>> assert get_median([1, 12, 15, 26, 38], [2, 13, 17, 30, 45], 5) == 16.0
>>> assert get_median([2, 4, 8, 9], [7, 13, 19, 28], 4) == 8.5
>>> assert get_median([3, 6, 14, 23, 36, 42], [2, 18, 27, 39, 49, 55], 6) == 25.0
Answer: | mbpp | mbpp | def get_median(arr1, arr2, n):
i = 0
j = 0
m1 = -1
m2 = -1
count = 0
while count < n + 1:
count += 1
if i == n:
m1 = m2
m2 = arr2[0]
break
elif j == n:
m1 = m2
m2 = arr1[0]
break
if arr1[i] <= arr2[j]:
m1 = m2
m2 = arr1[i]
i += 1
else:
m1 = m2
m2 = arr2[j]
j += 1
return (m1 + m2)/2 | train |
623 | Instruct: Write a function to find the n-th power of individual elements in a list using lambda function.
>>> assert nth_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],2)==[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> assert nth_nums([10,20,30],3)==([1000, 8000, 27000])
>>> assert nth_nums([12,15],5)==([248832, 759375])
Answer: | mbpp | mbpp | def nth_nums(nums,n):
nth_nums = list(map(lambda x: x ** n, nums))
return nth_nums | train |
624 | Instruct: Write a python function to convert the given string to upper case.
>>> assert is_upper("person") =="PERSON"
>>> assert is_upper("final") == "FINAL"
>>> assert is_upper("Valid") == "VALID"
Answer: | mbpp | mbpp | def is_upper(string):
return (string.upper()) | train |
625 | Instruct: Write a python function to interchange first and last elements in a given list.
>>> assert swap_List([1,2,3]) == [3,2,1]
>>> assert swap_List([1,2,3,4,4]) == [4,2,3,4,1]
>>> assert swap_List([4,5,6]) == [6,5,4]
Answer: | mbpp | mbpp | def swap_List(newList):
size = len(newList)
temp = newList[0]
newList[0] = newList[size - 1]
newList[size - 1] = temp
return newList | train |
626 | Instruct: Write a python function to find the largest triangle that can be inscribed in the semicircle.
>>> assert triangle_area(0) == 0
>>> assert triangle_area(-1) == -1
>>> assert triangle_area(2) == 4
Answer: | mbpp | mbpp | def triangle_area(r) :
if r < 0 :
return -1
return r * r | train |
627 | Instruct: Write a python function to find the smallest missing number from the given array.
>>> assert find_First_Missing([0,1,2,3],0,3) == 4
>>> assert find_First_Missing([0,1,2,6,9],0,4) == 3
>>> assert find_First_Missing([2,3,5,8,9],0,4) == 0
Answer: | mbpp | mbpp | def find_First_Missing(array,start,end):
if (start > end):
return end + 1
if (start != array[start]):
return start;
mid = int((start + end) / 2)
if (array[mid] == mid):
return find_First_Missing(array,mid+1,end)
return find_First_Missing(array,start,mid) | train |
628 | Instruct: Write a function to replace all spaces in the given string with character * list item * list item * list item * list item '%20'.
>>> assert replace_spaces("My Name is Dawood") == 'My%20Name%20is%20Dawood'
>>> assert replace_spaces("I am a Programmer") == 'I%20am%20a%20Programmer'
>>> assert replace_spaces("I love Coding") == 'I%20love%20Coding'
Answer: | mbpp | mbpp | MAX=1000;
def replace_spaces(string):
string=string.strip()
i=len(string)
space_count=string.count(' ')
new_length = i + space_count*2
if new_length > MAX:
return -1
index = new_length-1
string=list(string)
for f in range(i-2, new_length-2):
string.append('0')
for j in range(i-1, 0, -1):
if string[j] == ' ':
string[index] = '0'
string[index-1] = '2'
string[index-2] = '%'
index=index-3
else:
string[index] = string[j]
index -= 1
return ''.join(string) | train |
629 | Instruct: Write a python function to find even numbers from a mixed list.
>>> assert Split([1,2,3,4,5]) == [2,4]
>>> assert Split([4,5,6,7,8,0,1]) == [4,6,8,0]
>>> assert Split ([8,12,15,19]) == [8,12]
Answer: | mbpp | mbpp | def Split(list):
ev_li = []
for i in list:
if (i % 2 == 0):
ev_li.append(i)
return ev_li | train |
630 | Instruct: Write a function to extract all the adjacent coordinates of the given coordinate tuple.
>>> assert get_coordinates((3, 4)) == [[2, 3], [2, 4], [2, 5], [3, 3], [3, 4], [3, 5], [4, 3], [4, 4], [4, 5]]
>>> assert get_coordinates((4, 5)) ==[[3, 4], [3, 5], [3, 6], [4, 4], [4, 5], [4, 6], [5, 4], [5, 5], [5, 6]]
>>> assert get_coordinates((5, 6)) == [[4, 5], [4, 6], [4, 7], [5, 5], [5, 6], [5, 7], [6, 5], [6, 6], [6, 7]]
Answer: | mbpp | mbpp | def adjac(ele, sub = []):
if not ele:
yield sub
else:
yield from [idx for j in range(ele[0] - 1, ele[0] + 2)
for idx in adjac(ele[1:], sub + [j])]
def get_coordinates(test_tup):
res = list(adjac(test_tup))
return (res) | train |
631 | Instruct: Write a function to replace whitespaces with an underscore and vice versa in a given string by using regex.
>>> assert replace_spaces('Jumanji The Jungle') == 'Jumanji_The_Jungle'
>>> assert replace_spaces('The Avengers') == 'The_Avengers'
>>> assert replace_spaces('Fast and Furious') == 'Fast_and_Furious'
Answer: | mbpp | mbpp | import re
text = 'Python Exercises'
def replace_spaces(text):
text =text.replace (" ", "_")
return (text)
text =text.replace ("_", " ")
return (text) | train |
632 | Instruct: Write a python function to move all zeroes to the end of the given list.
>>> assert move_zero([1,0,2,0,3,4]) == [1,2,3,4,0,0]
>>> assert move_zero([2,3,2,0,0,4,0,5,0]) == [2,3,2,4,5,0,0,0,0]
>>> assert move_zero([0,1,0,1,1]) == [1,1,1,0,0]
Answer: | mbpp | mbpp | def move_zero(num_list):
a = [0 for i in range(num_list.count(0))]
x = [ i for i in num_list if i != 0]
x.extend(a)
return (x) | train |
633 | Instruct: Write a python function to find the sum of xor of all pairs of numbers in the given array.
>>> assert pair_OR_Sum([5,9,7,6],4) == 47
>>> assert pair_OR_Sum([7,3,5],3) == 12
>>> assert pair_OR_Sum([7,3],2) == 4
Answer: | mbpp | mbpp | def pair_OR_Sum(arr,n) :
ans = 0
for i in range(0,n) :
for j in range(i + 1,n) :
ans = ans + (arr[i] ^ arr[j])
return ans | train |
634 | Instruct: Write a python function to find the sum of fourth power of first n even natural numbers.
>>> assert even_Power_Sum(2) == 272
>>> assert even_Power_Sum(3) == 1568
>>> assert even_Power_Sum(4) == 5664
Answer: | mbpp | mbpp | def even_Power_Sum(n):
sum = 0;
for i in range(1,n + 1):
j = 2*i;
sum = sum + (j*j*j*j);
return sum; | train |
635 | Instruct: Write a function to push all values into a heap and then pop off the smallest values one at a time.
>>> assert heap_sort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])==[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> assert heap_sort([25, 35, 22, 85, 14, 65, 75, 25, 58])==[14, 22, 25, 25, 35, 58, 65, 75, 85]
>>> assert heap_sort( [7, 1, 9, 5])==[1,5,7,9]
Answer: | mbpp | mbpp | import heapq as hq
def heap_sort(iterable):
h = []
for value in iterable:
hq.heappush(h, value)
return [hq.heappop(h) for i in range(len(h))] | train |
636 | Instruct: Write a python function to check if roots of a quadratic equation are reciprocal of each other or not.
>>> assert Check_Solution(2,0,2) == "Yes"
>>> assert Check_Solution(2,-5,2) == "Yes"
>>> assert Check_Solution(1,2,3) == "No"
Answer: | mbpp | mbpp | def Check_Solution(a,b,c):
if (a == c):
return ("Yes");
else:
return ("No"); | train |
637 | Instruct: Write a function to check whether the given amount has no profit and no loss
>>> assert noprofit_noloss(1500,1200)==False
>>> assert noprofit_noloss(100,100)==True
>>> assert noprofit_noloss(2000,5000)==False
Answer: | mbpp | mbpp | def noprofit_noloss(actual_cost,sale_amount):
if(sale_amount == actual_cost):
return True
else:
return False | train |
638 | Instruct: Write a function to calculate wind chill index.
>>> assert wind_chill(120,35)==40
>>> assert wind_chill(40,70)==86
>>> assert wind_chill(10,100)==116
Answer: | mbpp | mbpp | import math
def wind_chill(v,t):
windchill = 13.12 + 0.6215*t - 11.37*math.pow(v, 0.16) + 0.3965*t*math.pow(v, 0.16)
return int(round(windchill, 0)) | train |
639 | Instruct: Write a function to sum the length of the names of a given list of names after removing the names that start with a lowercase letter.
>>> assert sample_nam(['sally', 'Dylan', 'rebecca', 'Diana', 'Joanne', 'keith'])==16
>>> assert sample_nam(["php", "res", "Python", "abcd", "Java", "aaa"])==10
>>> assert sample_nam(["abcd", "Python", "abba", "aba"])==6
Answer: | mbpp | mbpp | def sample_nam(sample_names):
sample_names=list(filter(lambda el:el[0].isupper() and el[1:].islower(),sample_names))
return len(''.join(sample_names)) | train |
640 | Instruct: Write a function to remove the parenthesis area in a string.
>>> assert remove_parenthesis(["python (chrome)"])==("python")
>>> assert remove_parenthesis(["string(.abc)"])==("string")
>>> assert remove_parenthesis(["alpha(num)"])==("alpha")
Answer: | mbpp | mbpp | import re
def remove_parenthesis(items):
for item in items:
return (re.sub(r" ?\([^)]+\)", "", item)) | train |
641 | Instruct: Write a function to find the nth nonagonal number.
>>> assert is_nonagonal(10) == 325
>>> assert is_nonagonal(15) == 750
>>> assert is_nonagonal(18) == 1089
Answer: | mbpp | mbpp | def is_nonagonal(n):
return int(n * (7 * n - 5) / 2) | train |
642 | Instruct: Write a function to remove similar rows from the given tuple matrix.
>>> assert remove_similar_row([[(4, 5), (3, 2)], [(2, 2), (4, 6)], [(3, 2), (4, 5)]] ) == {((2, 2), (4, 6)), ((3, 2), (4, 5))}
>>> assert remove_similar_row([[(5, 6), (4, 3)], [(3, 3), (5, 7)], [(4, 3), (5, 6)]] ) == {((4, 3), (5, 6)), ((3, 3), (5, 7))}
>>> assert remove_similar_row([[(6, 7), (5, 4)], [(4, 4), (6, 8)], [(5, 4), (6, 7)]] ) =={((4, 4), (6, 8)), ((5, 4), (6, 7))}
Answer: | mbpp | mbpp | def remove_similar_row(test_list):
res = set(sorted([tuple(sorted(set(sub))) for sub in test_list]))
return (res) | train |
643 | Instruct: Write a function that matches a word containing 'z', not at the start or end of the word.
>>> assert text_match_wordz_middle("pythonzabc.")==('Found a match!')
>>> assert text_match_wordz_middle("xyzabc.")==('Found a match!')
>>> assert text_match_wordz_middle(" lang .")==('Not matched!')
Answer: | mbpp | mbpp | import re
def text_match_wordz_middle(text):
patterns = '\Bz\B'
if re.search(patterns, text):
return 'Found a match!'
else:
return('Not matched!') | train |
644 | Instruct: Write a python function to reverse an array upto a given position.
>>> assert reverse_Array_Upto_K([1, 2, 3, 4, 5, 6],4) == [4, 3, 2, 1, 5, 6]
>>> assert reverse_Array_Upto_K([4, 5, 6, 7], 2) == [5, 4, 6, 7]
>>> assert reverse_Array_Upto_K([9, 8, 7, 6, 5],3) == [7, 8, 9, 6, 5]
Answer: | mbpp | mbpp | def reverse_Array_Upto_K(input, k):
return (input[k-1::-1] + input[k:]) | train |
645 | Instruct: Write a function to find the product of it’s kth index in the given tuples.
>>> assert find_k_product([(5, 6, 7), (1, 3, 5), (8, 9, 19)], 2) == 665
>>> assert find_k_product([(6, 7, 8), (2, 4, 6), (9, 10, 20)], 1) == 280
>>> assert find_k_product([(7, 8, 9), (3, 5, 7), (10, 11, 21)], 0) == 210
Answer: | mbpp | mbpp | def get_product(val) :
res = 1
for ele in val:
res *= ele
return res
def find_k_product(test_list, K):
res = get_product([sub[K] for sub in test_list])
return (res) | train |
646 | Instruct: Write a python function to count number of cubes of size k in a cube of size n.
>>> assert No_of_cubes(2,1) == 8
>>> assert No_of_cubes(5,2) == 64
>>> assert No_of_cubes(1,1) == 1
Answer: | mbpp | mbpp | def No_of_cubes(N,K):
No = 0
No = (N - K + 1)
No = pow(No, 3)
return No | train |
647 | Instruct: Write a function to split a string at uppercase letters.
>>> assert split_upperstring("PythonProgramLanguage")==['Python','Program','Language']
>>> assert split_upperstring("PythonProgram")==['Python','Program']
>>> assert split_upperstring("ProgrammingLanguage")==['Programming','Language']
Answer: | mbpp | mbpp | import re
def split_upperstring(text):
return (re.findall('[A-Z][^A-Z]*', text)) | train |
648 | Instruct: Write a function to exchange the position of every n-th value with (n+1)th value and (n+1)th value with n-th value in a given list.
>>> assert exchange_elements([0,1,2,3,4,5])==[1, 0, 3, 2, 5, 4]
>>> assert exchange_elements([5,6,7,8,9,10])==[6,5,8,7,10,9]
>>> assert exchange_elements([25,35,45,55,75,95])==[35,25,55,45,95,75]
Answer: | mbpp | mbpp | from itertools import zip_longest, chain, tee
def exchange_elements(lst):
lst1, lst2 = tee(iter(lst), 2)
return list(chain.from_iterable(zip_longest(lst[1::2], lst[::2]))) | train |
649 | Instruct: Write a python function to calculate the sum of the numbers in a list between the indices of a specified range.
>>> assert sum_Range_list([2, 1, 5, 6, 8, 3, 4, 9, 10, 11, 8, 12],8,10) == 29
>>> assert sum_Range_list([1,2,3,4,5],1,2) == 5
>>> assert sum_Range_list([1,0,1,2,5,6],4,5) == 11
Answer: | mbpp | mbpp | def sum_Range_list(nums, m, n):
sum_range = 0
for i in range(m, n+1, 1):
sum_range += nums[i]
return sum_range | train |
650 | Instruct: Write a python function to check whether the given two arrays are equal or not.
>>> assert are_Equal([1,2,3],[3,2,1],3,3) == True
>>> assert are_Equal([1,1,1],[2,2,2],3,3) == False
>>> assert are_Equal([8,9],[4,5,6],2,3) == False
Answer: | mbpp | mbpp | def are_Equal(arr1,arr2,n,m):
if (n != m):
return False
arr1.sort()
arr2.sort()
for i in range(0,n - 1):
if (arr1[i] != arr2[i]):
return False
return True | train |
651 | Instruct: Write a function to check if one tuple is a subset of another tuple.
>>> assert check_subset((10, 4, 5, 6), (5, 10)) == True
>>> assert check_subset((1, 2, 3, 4), (5, 6)) == False
>>> assert check_subset((7, 8, 9, 10), (10, 8)) == True
Answer: | mbpp | mbpp | def check_subset(test_tup1, test_tup2):
res = set(test_tup2).issubset(test_tup1)
return (res) | train |
652 | Instruct: Write a function to flatten the given tuple matrix into the tuple list with each tuple representing each column.
>>> assert matrix_to_list([[(4, 5), (7, 8)], [(10, 13), (18, 17)], [(0, 4), (10, 1)]]) == '[(4, 7, 10, 18, 0, 10), (5, 8, 13, 17, 4, 1)]'
>>> assert matrix_to_list([[(5, 6), (8, 9)], [(11, 14), (19, 18)], [(1, 5), (11, 2)]]) == '[(5, 8, 11, 19, 1, 11), (6, 9, 14, 18, 5, 2)]'
>>> assert matrix_to_list([[(6, 7), (9, 10)], [(12, 15), (20, 21)], [(23, 7), (15, 8)]]) == '[(6, 9, 12, 20, 23, 15), (7, 10, 15, 21, 7, 8)]'
Answer: | mbpp | mbpp | def matrix_to_list(test_list):
temp = [ele for sub in test_list for ele in sub]
res = list(zip(*temp))
return (str(res)) | train |
653 | Instruct: Write a function to group a sequence of key-value pairs into a dictionary of lists using collections module.
>>> assert grouping_dictionary([('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)])== ({'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})
>>> assert grouping_dictionary([('yellow', 10), ('blue', 20), ('yellow', 30), ('blue', 40), ('red', 10)])== ({'yellow': [10, 30], 'blue': [20, 40], 'red': [10]})
>>> assert grouping_dictionary([('yellow', 15), ('blue', 25), ('yellow', 35), ('blue', 45), ('red', 15)])== ({'yellow': [15, 35], 'blue': [25, 45], 'red': [15]})
Answer: | mbpp | mbpp | from collections import defaultdict
def grouping_dictionary(l):
d = defaultdict(list)
for k, v in l:
d[k].append(v)
return d | train |
654 | Instruct: Write a function to find the perimeter of a rectangle.
>>> assert rectangle_perimeter(10,20)==60
>>> assert rectangle_perimeter(10,5)==30
>>> assert rectangle_perimeter(4,2)==12
Answer: | mbpp | mbpp | def rectangle_perimeter(l,b):
perimeter=2*(l+b)
return perimeter | train |
655 | Instruct: Write a python function to find the sum of fifth power of n natural numbers.
>>> assert fifth_Power_Sum(2) == 33
>>> assert fifth_Power_Sum(4) == 1300
>>> assert fifth_Power_Sum(3) == 276
Answer: | mbpp | mbpp | def fifth_Power_Sum(n) :
sm = 0
for i in range(1,n+1) :
sm = sm + (i*i*i*i*i)
return sm | train |
656 | Instruct: Write a python function to find the minimum sum of absolute differences of two arrays.
>>> assert find_Min_Sum([3,2,1],[2,1,3],3) == 0
>>> assert find_Min_Sum([1,2,3],[4,5,6],3) == 9
>>> assert find_Min_Sum([4,1,8,7],[2,3,6,5],4) == 6
Answer: | mbpp | mbpp | def find_Min_Sum(a,b,n):
a.sort()
b.sort()
sum = 0
for i in range(n):
sum = sum + abs(a[i] - b[i])
return sum | train |
657 | Instruct: Write a python function to find the first digit in factorial of a given number.
>>> assert first_Digit(5) == 1
>>> assert first_Digit(10) == 3
>>> assert first_Digit(7) == 5
Answer: | mbpp | mbpp | import math
def first_Digit(n) :
fact = 1
for i in range(2,n + 1) :
fact = fact * i
while (fact % 10 == 0) :
fact = int(fact / 10)
while (fact >= 10) :
fact = int(fact / 10)
return math.floor(fact) | train |
658 | Instruct: Write a function to find the item with maximum occurrences in a given list.
>>> assert max_occurrences([2,3,8,4,7,9,8,2,6,5,1,6,1,2,3,4,6,9,1,2])==2
>>> assert max_occurrences([1, 3,5, 7,1, 3,13, 15, 17,5, 7,9,1, 11])==1
>>> assert max_occurrences([1, 2, 3,2, 4, 5,1, 1, 1])==1
Answer: | mbpp | mbpp | def max_occurrences(list1):
max_val = 0
result = list1[0]
for i in list1:
occu = list1.count(i)
if occu > max_val:
max_val = occu
result = i
return result | train |
659 | Instruct: Write a python function to print duplicants from a list of integers.
>>> assert Repeat([10, 20, 30, 20, 20, 30, 40, 50, -20, 60, 60, -20, -20]) == [20, 30, -20, 60]
>>> assert Repeat([-1, 1, -1, 8]) == [-1]
>>> assert Repeat([1, 2, 3, 1, 2,]) == [1, 2]
Answer: | mbpp | mbpp | def Repeat(x):
_size = len(x)
repeated = []
for i in range(_size):
k = i + 1
for j in range(k, _size):
if x[i] == x[j] and x[i] not in repeated:
repeated.append(x[i])
return repeated | train |
660 | Instruct: Write a python function to choose points from two ranges such that no point lies in both the ranges.
>>> assert find_Points(5,10,1,5) == (1,10)
>>> assert find_Points(3,5,7,9) == (3,9)
>>> assert find_Points(1,5,2,8) == (1,8)
Answer: | mbpp | mbpp | def find_Points(l1,r1,l2,r2):
x = min(l1,l2) if (l1 != l2) else -1
y = max(r1,r2) if (r1 != r2) else -1
return (x,y) | train |
661 | Instruct: Write a function to find the maximum sum that can be formed which has no three consecutive elements present.
>>> assert max_sum_of_three_consecutive([100, 1000, 100, 1000, 1], 5) == 2101
>>> assert max_sum_of_three_consecutive([3000, 2000, 1000, 3, 10], 5) == 5013
>>> assert max_sum_of_three_consecutive([1, 2, 3, 4, 5, 6, 7, 8], 8) == 27
Answer: | mbpp | mbpp | def max_sum_of_three_consecutive(arr, n):
sum = [0 for k in range(n)]
if n >= 1:
sum[0] = arr[0]
if n >= 2:
sum[1] = arr[0] + arr[1]
if n > 2:
sum[2] = max(sum[1], max(arr[1] + arr[2], arr[0] + arr[2]))
for i in range(3, n):
sum[i] = max(max(sum[i-1], sum[i-2] + arr[i]), arr[i] + arr[i-1] + sum[i-3])
return sum[n-1] | train |
662 | Instruct: Write a function to sort a list in a dictionary.
>>> assert sorted_dict({'n1': [2, 3, 1], 'n2': [5, 1, 2], 'n3': [3, 2, 4]})=={'n1': [1, 2, 3], 'n2': [1, 2, 5], 'n3': [2, 3, 4]}
>>> assert sorted_dict({'n1': [25,37,41], 'n2': [41,54,63], 'n3': [29,38,93]})=={'n1': [25, 37, 41], 'n2': [41, 54, 63], 'n3': [29, 38, 93]}
>>> assert sorted_dict({'n1': [58,44,56], 'n2': [91,34,58], 'n3': [100,200,300]})=={'n1': [44, 56, 58], 'n2': [34, 58, 91], 'n3': [100, 200, 300]}
Answer: | mbpp | mbpp | def sorted_dict(dict1):
sorted_dict = {x: sorted(y) for x, y in dict1.items()}
return sorted_dict | train |
663 | Instruct: Write a function to find the largest possible value of k such that k modulo x is y.
>>> assert find_max_val(15, 10, 5) == 15
>>> assert find_max_val(187, 10, 5) == 185
>>> assert find_max_val(16, 11, 1) == 12
Answer: | mbpp | mbpp | import sys
def find_max_val(n, x, y):
ans = -sys.maxsize
for k in range(n + 1):
if (k % x == y):
ans = max(ans, k)
return (ans if (ans >= 0 and
ans <= n) else -1) | train |
664 | Instruct: Write a python function to find the average of even numbers till a given even number.
>>> assert average_Even(2) == 2
>>> assert average_Even(4) == 3
>>> assert average_Even(100) == 51
Answer: | mbpp | mbpp | def average_Even(n) :
if (n% 2!= 0) :
return ("Invalid Input")
return -1
sm = 0
count = 0
while (n>= 2) :
count = count+1
sm = sm+n
n = n-2
return sm // count | train |
665 | Instruct: Write a python function to shift first element to the end of given list.
>>> assert move_last([1,2,3,4]) == [2,3,4,1]
>>> assert move_last([2,3,4,1,5,0]) == [3,4,1,5,0,2]
>>> assert move_last([5,4,3,2,1]) == [4,3,2,1,5]
Answer: | mbpp | mbpp | def move_last(num_list):
a = [num_list[0] for i in range(num_list.count(num_list[0]))]
x = [ i for i in num_list if i != num_list[0]]
x.extend(a)
return (x) | train |
666 | Instruct: Write a function to count occurrence of a character in a string.
>>> assert count_char("Python",'o')==1
>>> assert count_char("little",'t')==2
>>> assert count_char("assert",'s')==2
Answer: | mbpp | mbpp | def count_char(string,char):
count = 0
for i in range(len(string)):
if(string[i] == char):
count = count + 1
return count | train |
667 | Instruct: Write a python function to count number of vowels in the string.
>>> assert Check_Vow('corner','AaEeIiOoUu') == 2
>>> assert Check_Vow('valid','AaEeIiOoUu') == 2
>>> assert Check_Vow('true','AaEeIiOoUu') ==2
Answer: | mbpp | mbpp | def Check_Vow(string, vowels):
final = [each for each in string if each in vowels]
return(len(final))
| train |
668 | Instruct: Write a python function to replace multiple occurence of character by single.
>>> assert replace('peep','e') == 'pep'
>>> assert replace('Greek','e') == 'Grek'
>>> assert replace('Moon','o') == 'Mon'
Answer: | mbpp | mbpp | import re
def replace(string, char):
pattern = char + '{2,}'
string = re.sub(pattern, char, string)
return string | train |
669 | Instruct: Write a function to check whether the given ip address is valid or not using regex.
>>> assert check_IP("192.168.0.1") == 'Valid IP address'
>>> assert check_IP("110.234.52.124") == 'Valid IP address'
>>> assert check_IP("366.1.2.2") == 'Invalid IP address'
Answer: | mbpp | mbpp | import re
regex = '''^(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(
25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(
25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(
25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)$'''
def check_IP(Ip):
if(re.search(regex, Ip)):
return ("Valid IP address")
else:
return ("Invalid IP address") | train |
670 | Instruct: Write a python function to check whether a sequence of numbers has a decreasing trend or not.
>>> assert decreasing_trend([-4,-3,-2,-1]) == True
>>> assert decreasing_trend([1,2,3]) == True
>>> assert decreasing_trend([3,2,1]) == False
Answer: | mbpp | mbpp | def decreasing_trend(nums):
if (sorted(nums)== nums):
return True
else:
return False | train |
671 | Instruct: Write a python function to set the right most unset bit.
>>> assert set_Right_most_Unset_Bit(21) == 23
>>> assert set_Right_most_Unset_Bit(11) == 15
>>> assert set_Right_most_Unset_Bit(15) == 15
Answer: | mbpp | mbpp | import math
def get_Pos_Of_Right_most_Set_Bit(n):
return int(math.log2(n&-n)+1)
def set_Right_most_Unset_Bit(n):
if (n == 0):
return 1
if ((n & (n + 1)) == 0):
return n
pos = get_Pos_Of_Right_most_Set_Bit(~n)
return ((1 << (pos - 1)) | n) | train |
672 | Instruct: Write a function to find maximum of three numbers.
>>> assert max_of_three(10,20,30)==30
>>> assert max_of_three(55,47,39)==55
>>> assert max_of_three(10,49,30)==49
Answer: | mbpp | mbpp | def max_of_three(num1,num2,num3):
if (num1 >= num2) and (num1 >= num3):
lnum = num1
elif (num2 >= num1) and (num2 >= num3):
lnum = num2
else:
lnum = num3
return lnum | train |
673 | Instruct: Write a python function to convert a list of multiple integers into a single integer.
>>> assert convert([1,2,3]) == 123
>>> assert convert([4,5,6]) == 456
>>> assert convert([7,8,9]) == 789
Answer: | mbpp | mbpp | def convert(list):
s = [str(i) for i in list]
res = int("".join(s))
return (res) | train |
674 | Instruct: Write a function to remove duplicate words from a given string using collections module.
>>> assert remove_duplicate("Python Exercises Practice Solution Exercises")==("Python Exercises Practice Solution")
>>> assert remove_duplicate("Python Exercises Practice Solution Python")==("Python Exercises Practice Solution")
>>> assert remove_duplicate("Python Exercises Practice Solution Practice")==("Python Exercises Practice Solution")
Answer: | mbpp | mbpp | from collections import OrderedDict
def remove_duplicate(string):
result = ' '.join(OrderedDict((w,w) for w in string.split()).keys())
return result | train |
675 | Instruct: Write a function to add two integers. however, if the sum is between the given range it will return 20.
>>> assert sum_nums(2,10,11,20)==20
>>> assert sum_nums(15,17,1,10)==32
>>> assert sum_nums(10,15,5,30)==20
Answer: | mbpp | mbpp | def sum_nums(x, y,m,n):
sum_nums= x + y
if sum_nums in range(m, n):
return 20
else:
return sum_nums | train |
676 | Instruct: Write a function to remove everything except alphanumeric characters from the given string by using regex.
>>> assert remove_extra_char('**//Google Android// - 12. ') == 'GoogleAndroid12'
>>> assert remove_extra_char('****//Google Flutter//*** - 36. ') == 'GoogleFlutter36'
>>> assert remove_extra_char('**//Google Firebase// - 478. ') == 'GoogleFirebase478'
Answer: | mbpp | mbpp | import re
def remove_extra_char(text1):
pattern = re.compile('[\W_]+')
return (pattern.sub('', text1)) | train |
677 | Instruct: Write a function to check if the triangle is valid or not.
>>> assert validity_triangle(60,50,90)==False
>>> assert validity_triangle(45,75,60)==True
>>> assert validity_triangle(30,50,100)==True
Answer: | mbpp | mbpp | def validity_triangle(a,b,c):
total = a + b + c
if total == 180:
return True
else:
return False | train |
678 | Instruct: Write a python function to remove spaces from a given string.
>>> assert remove_spaces("a b c") == "abc"
>>> assert remove_spaces("1 2 3") == "123"
>>> assert remove_spaces(" b c") == "bc"
Answer: | mbpp | mbpp | def remove_spaces(str1):
str1 = str1.replace(' ','')
return str1 | train |
679 | Instruct: Write a function to access dictionary key’s element by index.
>>> assert access_key({'physics': 80, 'math': 90, 'chemistry': 86},0)== 'physics'
>>> assert access_key({'python':10, 'java': 20, 'C++':30},2)== 'C++'
>>> assert access_key({'program':15,'computer':45},1)== 'computer'
Answer: | mbpp | mbpp | def access_key(ditionary,key):
return list(ditionary)[key] | train |
680 | Instruct: Write a python function to check whether a sequence of numbers has an increasing trend or not.
>>> assert increasing_trend([1,2,3,4]) == True
>>> assert increasing_trend([4,3,2,1]) == False
>>> assert increasing_trend([0,1,4,9]) == True
Answer: | mbpp | mbpp | def increasing_trend(nums):
if (sorted(nums)== nums):
return True
else:
return False | train |
681 | Instruct: Write a python function to find the smallest prime divisor of a number.
>>> assert smallest_Divisor(10) == 2
>>> assert smallest_Divisor(25) == 5
>>> assert smallest_Divisor(31) == 31
Answer: | mbpp | mbpp | def smallest_Divisor(n):
if (n % 2 == 0):
return 2;
i = 3;
while (i*i <= n):
if (n % i == 0):
return i;
i += 2;
return n; | train |
682 | Instruct: Write a function to multiply two lists using map and lambda function.
>>> assert mul_list([1, 2, 3],[4,5,6])==[4,10,18]
>>> assert mul_list([1,2],[3,4])==[3,8]
>>> assert mul_list([90,120],[50,70])==[4500,8400]
Answer: | mbpp | mbpp | def mul_list(nums1,nums2):
result = map(lambda x, y: x * y, nums1, nums2)
return list(result) | train |
683 | Instruct: Write a python function to check whether the given number can be represented by sum of two squares or not.
>>> assert sum_Square(25) == True
>>> assert sum_Square(24) == False
>>> assert sum_Square(17) == True
Answer: | mbpp | mbpp | def sum_Square(n) :
i = 1
while i*i <= n :
j = 1
while (j*j <= n) :
if (i*i+j*j == n) :
return True
j = j+1
i = i+1
return False | train |
684 | Instruct: Write a python function to count occurences of a character in a repeated string.
>>> assert count_Char("abcac",'a') == 4
>>> assert count_Char("abca",'c') == 2
>>> assert count_Char("aba",'a') == 7
Answer: | mbpp | mbpp | def count_Char(str,x):
count = 0
for i in range(len(str)):
if (str[i] == x) :
count += 1
n = 10
repititions = n // len(str)
count = count * repititions
l = n % len(str)
for i in range(l):
if (str[i] == x):
count += 1
return count | train |
685 | Instruct: Write a python function to find sum of prime numbers between 1 to n.
>>> assert sum_Of_Primes(10) == 17
>>> assert sum_Of_Primes(20) == 77
>>> assert sum_Of_Primes(5) == 10
Answer: | mbpp | mbpp | def sum_Of_Primes(n):
prime = [True] * (n + 1)
p = 2
while p * p <= n:
if prime[p] == True:
i = p * 2
while i <= n:
prime[i] = False
i += p
p += 1
sum = 0
for i in range (2,n + 1):
if(prime[i]):
sum += i
return sum | train |
686 | Instruct: Write a function to find the frequency of each element in the given list.
>>> assert freq_element((4, 5, 4, 5, 6, 6, 5, 5, 4) ) == '{4: 3, 5: 4, 6: 2}'
>>> assert freq_element((7, 8, 8, 9, 4, 7, 6, 5, 4) ) == '{7: 2, 8: 2, 9: 1, 4: 2, 6: 1, 5: 1}'
>>> assert freq_element((1, 4, 3, 1, 4, 5, 2, 6, 2, 7) ) == '{1: 2, 4: 2, 3: 1, 5: 1, 2: 2, 6: 1, 7: 1}'
Answer: | mbpp | mbpp | from collections import defaultdict
def freq_element(test_tup):
res = defaultdict(int)
for ele in test_tup:
res[ele] += 1
return (str(dict(res))) | train |
687 | Instruct: Write a function to find the greatest common divisor (gcd) of two integers by using recursion.
>>> assert recur_gcd(12,14) == 2
>>> assert recur_gcd(13,17) == 1
>>> assert recur_gcd(9, 3) == 3
Answer: | mbpp | mbpp | def recur_gcd(a, b):
low = min(a, b)
high = max(a, b)
if low == 0:
return high
elif low == 1:
return 1
else:
return recur_gcd(low, high%low) | train |
688 | Instruct: Write a function to get the length of a complex number.
>>> assert len_complex(3,4)==5.0
>>> assert len_complex(9,10)==13.45362404707371
>>> assert len_complex(7,9)==11.40175425099138
Answer: | mbpp | mbpp | import cmath
def len_complex(a,b):
cn=complex(a,b)
length=abs(cn)
return length | train |
689 | Instruct: ## write a function to find the minimum number of jumps to reach the end of the array for the given array of integers where each element represents the max number of steps that can be made forward from that element. > indented block > indented block
>>> assert min_jumps([1, 3, 6, 1, 0, 9], 6) == 3
>>> assert min_jumps([1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9], 11) == 3
>>> assert min_jumps([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 11) == 10
Answer: | mbpp | mbpp | def min_jumps(arr, n):
jumps = [0 for i in range(n)]
if (n == 0) or (arr[0] == 0):
return float('inf')
jumps[0] = 0
for i in range(1, n):
jumps[i] = float('inf')
for j in range(i):
if (i <= j + arr[j]) and (jumps[j] != float('inf')):
jumps[i] = min(jumps[i], jumps[j] + 1)
break
return jumps[n-1] | train |
690 | Instruct: Write a function to multiply consecutive numbers of a given list.
>>> assert mul_consecutive_nums([1, 1, 3, 4, 4, 5, 6, 7])==[1, 3, 12, 16, 20, 30, 42]
>>> assert mul_consecutive_nums([4, 5, 8, 9, 6, 10])==[20, 40, 72, 54, 60]
>>> assert mul_consecutive_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])==[2, 6, 12, 20, 30, 42, 56, 72, 90]
Answer: | mbpp | mbpp | def mul_consecutive_nums(nums):
result = [b*a for a, b in zip(nums[:-1], nums[1:])]
return result | train |
691 | Instruct: Write a function to group the 1st elements on the basis of 2nd elements in the given tuple list.
>>> assert group_element([(6, 5), (2, 7), (2, 5), (8, 7), (9, 8), (3, 7)]) == {5: [6, 2], 7: [2, 8, 3], 8: [9]}
>>> assert group_element([(7, 6), (3, 8), (3, 6), (9, 8), (10, 9), (4, 8)]) == {6: [7, 3], 8: [3, 9, 4], 9: [10]}
>>> assert group_element([(8, 7), (4, 9), (4, 7), (10, 9), (11, 10), (5, 9)]) == {7: [8, 4], 9: [4, 10, 5], 10: [11]}
Answer: | mbpp | mbpp | from itertools import groupby
def group_element(test_list):
res = dict()
for key, val in groupby(sorted(test_list, key = lambda ele: ele[1]), key = lambda ele: ele[1]):
res[key] = [ele[0] for ele in val]
return (res)
| train |
692 | Instruct: Write a python function to find the last two digits in factorial of a given number.
>>> assert last_Two_Digits(7) == 40
>>> assert last_Two_Digits(5) == 20
>>> assert last_Two_Digits(2) == 2
Answer: | mbpp | mbpp | def last_Two_Digits(N):
if (N >= 10):
return
fac = 1
for i in range(1,N + 1):
fac = (fac * i) % 100
return (fac) | train |
693 | Instruct: Write a function to remove multiple spaces in a string by using regex.
>>> assert remove_multiple_spaces('Google Assistant') == 'Google Assistant'
>>> assert remove_multiple_spaces('Quad Core') == 'Quad Core'
>>> assert remove_multiple_spaces('ChromeCast Built-in') == 'ChromeCast Built-in'
Answer: | mbpp | mbpp | import re
def remove_multiple_spaces(text1):
return (re.sub(' +',' ',text1)) | train |
694 | Instruct: Write a function to extract unique values from the given dictionary values.
>>> assert extract_unique({'msm' : [5, 6, 7, 8],'is' : [10, 11, 7, 5],'best' : [6, 12, 10, 8],'for' : [1, 2, 5]} ) == [1, 2, 5, 6, 7, 8, 10, 11, 12]
>>> assert extract_unique({'Built' : [7, 1, 9, 4],'for' : [11, 21, 36, 14, 9],'ISP' : [4, 1, 21, 39, 47],'TV' : [1, 32, 38]} ) == [1, 4, 7, 9, 11, 14, 21, 32, 36, 38, 39, 47]
>>> assert extract_unique({'F' : [11, 13, 14, 17],'A' : [12, 11, 15, 18],'N' : [19, 21, 15, 36],'G' : [37, 36, 35]}) == [11, 12, 13, 14, 15, 17, 18, 19, 21, 35, 36, 37]
Answer: | mbpp | mbpp | def extract_unique(test_dict):
res = list(sorted({ele for val in test_dict.values() for ele in val}))
return res | train |
695 | Instruct: Write a function to check if each element of the second tuple is greater than its corresponding index in the first tuple.
>>> assert check_greater((10, 4, 5), (13, 5, 18)) == True
>>> assert check_greater((1, 2, 3), (2, 1, 4)) == False
>>> assert check_greater((4, 5, 6), (5, 6, 7)) == True
Answer: | mbpp | mbpp | def check_greater(test_tup1, test_tup2):
res = all(x < y for x, y in zip(test_tup1, test_tup2))
return (res) | train |
696 | Instruct: Write a function to zip two given lists of lists.
>>> assert zip_list([[1, 3], [5, 7], [9, 11]] ,[[2, 4], [6, 8], [10, 12, 14]] )==[[1, 3, 2, 4], [5, 7, 6, 8], [9, 11, 10, 12, 14]]
>>> assert zip_list([[1, 2], [3, 4], [5, 6]] ,[[7, 8], [9, 10], [11, 12]] )==[[1, 2, 7, 8], [3, 4, 9, 10], [5, 6, 11, 12]]
>>> assert zip_list([['a','b'],['c','d']] , [['e','f'],['g','h']] )==[['a','b','e','f'],['c','d','g','h']]
Answer: | mbpp | mbpp | def zip_list(list1,list2):
result = list(map(list.__add__, list1, list2))
return result | train |
697 | Instruct: Write a function to find number of even elements in the given list using lambda function.
>>> assert count_even([1, 2, 3, 5, 7, 8, 9, 10])==3
>>> assert count_even([10,15,14,13,-18,12,-20])==5
>>> assert count_even([1, 2, 4, 8, 9])==3
Answer: | mbpp | mbpp | def count_even(array_nums):
count_even = len(list(filter(lambda x: (x%2 == 0) , array_nums)))
return count_even | train |
698 | Instruct: Write a function to sort dictionary items by tuple product of keys for the given dictionary with tuple keys.
>>> assert sort_dict_item({(5, 6) : 3, (2, 3) : 9, (8, 4): 10, (6, 4): 12} ) == {(2, 3): 9, (6, 4): 12, (5, 6): 3, (8, 4): 10}
>>> assert sort_dict_item({(6, 7) : 4, (3, 4) : 10, (9, 5): 11, (7, 5): 13} ) == {(3, 4): 10, (7, 5): 13, (6, 7): 4, (9, 5): 11}
>>> assert sort_dict_item({(7, 8) : 5, (4, 5) : 11, (10, 6): 12, (8, 6): 14} ) == {(4, 5): 11, (8, 6): 14, (7, 8): 5, (10, 6): 12}
Answer: | mbpp | mbpp | def sort_dict_item(test_dict):
res = {key: test_dict[key] for key in sorted(test_dict.keys(), key = lambda ele: ele[1] * ele[0])}
return (res)
| train |
699 | Instruct: Write a python function to find the minimum number of swaps required to convert one binary string to another.
>>> assert min_Swaps("1101","1110") == 1
>>> assert min_Swaps("1111","0100") == "Not Possible"
>>> assert min_Swaps("1110000","0001101") == 3
Answer: | mbpp | mbpp | def min_Swaps(str1,str2) :
count = 0
for i in range(len(str1)) :
if str1[i] != str2[i] :
count += 1
if count % 2 == 0 :
return (count // 2)
else :
return ("Not Possible") | train |
700 | Instruct: Write a function to count the number of elements in a list which are within a specific range.
>>> assert count_range_in_list([10,20,30,40,40,40,70,80,99],40,100)==6
>>> assert count_range_in_list(['a','b','c','d','e','f'],'a','e')==5
>>> assert count_range_in_list([7,8,9,15,17,19,45],15,20)==3
Answer: | mbpp | mbpp | def count_range_in_list(li, min, max):
ctr = 0
for x in li:
if min <= x <= max:
ctr += 1
return ctr | train |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 37