id
int64
0
19
arxiv_id
stringlengths
11
12
page
int64
1
234
bounding_box
sequencelengths
4
4
latex_content
stringlengths
217
28.9k
extracted_content
sequencelengths
1
85
similarity_score
float64
0.36
1
table_image
unknown
page_image
unknown
0
2309.03451v2
3
[ 41.164124488830566, 83.946044921875, 281.89487075805664, 149.5 ]
\begin{table} \centering \caption{Sound Types and Characteristics of the data with $Principal Component 1 > 40$.} \begin{tabular}{|P{1.8cm}|c|P{3.5cm}|} \hline Sound Type & Number of Data & Occurrence Date \\ \hline Bearded Seal & 1033 & Mar. or May 2018 \\ \hline Walrus & 9 & Sept. or Oct. 2017 \\ \hline Airgun & 275 & Sept. 2017 \\ \hline Sea ice & 1 & Aug. 25 2017 00:00:00 \\ \hline Whales & 12 & Sept. 11 or 19 2017 \\ \hline Mammal & 7 & Sept. 23 2017 17:00:00 \\ \hline \end{tabular} \label{tab:sound_data} \end{table}
[ [ "Sound Type", "Number of Data", "Occurrence Date" ], [ "Bearded Seal", "1033", "Mar. or May 2018" ], [ "Walrus", "9", "Sept. or Oct. 2017" ], [ "Airgun", "275", "Sept. 2017" ], [ "Sea ice", "1", "Aug. 25 2017 00:00:00" ], [ "Whales", "12", "Sept. 11 or 19 2017" ], [ "Mammal", "7", "Sept. 23 2017 17:00:00" ] ]
0.969163
null
null
0
1504.03655v4
8
[ 172.1540069580078, 252.14034016927084, 439.84503173828125, 328.128662109375 ]
\begin{table}[h!] \centering \setlength{\tabcolsep}{2pt} \caption{Relation between various subspaces. \label{tb:relation} } \vspace{-2mm} \begin{tabular}{c|c|c|c|c} \hline \hline Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\ \hline $V$ & -- & -- & -- & -- \\ $F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\ $G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\ $\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\ $H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\ \hline \hline \end{tabular} \end{table}
[ [ "Subspace", "Evaluation", "Orth.", "Data Mini-batch", "RF Mini-batch" ], [ "V\nF\nt\nG\nt\nG˜\nt\nH\nt", "–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt", "–\n\u0013\n\u0017\n\u0017\n\u0017", "–\n\u0013\n\u0013\n\u0013\n\u0013", "–\n\u0017\n\u0017\n\u0017\n\u0013" ] ]
0.554517
null
null
1
1504.03655v4
14
[ 176.8730010986328, 86.14697265625, 435.12701416015625, 174.21697998046875 ]
\begin{table} \vspace{-4pt} \setlength{\tabcolsep}{10pt} \centering \caption{KCCA results on MNIST 8M (top 50 largest correlations)}\label{table:cca_mnist}\vspace{-4pt} \begin{tabular}{c|c|c|c|c} \hline \multirow{2}{*}{ \# of feat} & \multicolumn{2}{c|}{Random features} & \multicolumn{2}{c}{Nystrom features} \\ \cline{2-5} & corrs. & minutes & corrs. & minutes\\ \hline \hline 256 & 25.2 & 3.2 & 30.4 & 3.0 \\\hline 512 & 30.7 & 7.0 & 35.3 & 5.1 \\\hline 1024 & 35.3 & 13.9 & 38.0 & 10.1 \\\hline 2048 & 38.8 & 54.3 & 41.1 & 27.0 \\\hline 4096 & 41.5 & 186.7 & 42.7 & 71.0 \\\hline \end{tabular}\\ \bigskip \begin{tabular}{c|c|c|c} \hline \multicolumn{2}{c|}{DSGD-KCCA} & \multicolumn{2}{c}{linear CCA}\\ \hline corrs. & minutes & corrs. & minutes\\ \hline \hline 43.5 & 183.2 & 27.4 & 1.1\\\hline \end{tabular} \vspace{-4pt} \end{table}
[ [ "# of feat", "Random features", null, "Nystrom features", null ], [ null, "corrs.", "minutes", "corrs.", "minutes" ], [ "256", "25.2", "3.2", "30.4", "3.0" ], [ "512", "30.7", "7.0", "35.3", "5.1" ], [ "1024", "35.3", "13.9", "38.0", "10.1" ], [ "2048", "38.8", "54.3", "41.1", "27.0" ], [ "4096", "41.5", "186.7", "42.7", "71.0" ] ]
0.772
null
null
2
1504.03655v4
22
[ 172.1540069580078, 285.20733642578125, 439.84503173828125, 361.19500732421875 ]
\begin{table}[h!] \centering \setlength{\tabcolsep}{2pt} \caption{Relation between various subspaces. \label{app_tb:relation} } \begin{tabular}{c|c|c|c|c} \hline \hline Subspace & Evaluation & Orth. & Data Mini-batch & RF Mini-batch \\ \hline $V$ & -- & -- & -- & -- \\ $F_t$ & $f_t(x)$ & \cmark & \cmark & \xmark \\ $G_t$ & $g_t(x)$ & \xmark & \cmark & \xmark \\ $\Gtil_t$ & $\gtil_t(x)$ & \xmark & \cmark & \xmark \\ $H_t$ & $h_t(x)$ & \xmark & \cmark & \cmark \\ \hline \hline \end{tabular} \end{table}
[ [ "Subspace", "Evaluation", "Orth.", "Data Mini-batch", "RF Mini-batch" ], [ "V\nF\nt\nG\nt\nG˜\nt\nH\nt", "–\nf (x)\nt\ng (x)\nt\ng˜(x)\nt\nh (x)\nt", "–\n\u0013\n\u0017\n\u0017\n\u0017", "–\n\u0013\n\u0013\n\u0013\n\u0013", "–\n\u0017\n\u0017\n\u0017\n\u0013" ] ]
0.554517
null
null
0
1810.02442v1
11
[ 201.96400451660156, 72.198974609375, 407.30999755859375, 130.3809814453125 ]
\begin{table}[tbp] \centering \begin{tabular}{c|c|c|c} \hline Dataset $\#$ & \textsc{w/o L1} & \textsc{DGS} & \textsc{AutoLoss} \\ \hline \hline \emph{1} & .1337 & \textbf{.1019} & .1037 \\ \hline \emph{2} & .1294 & .1035 & \textbf{.1016} \\ \hline \emph{3} & .1318 & .1022 & \bf{.0997} \\ \hline \end{tabular} \vspace{-5pt} \caption{Comparing \textsc{AutoLoss} to other methods when transferring a trained AutoLoss controller for MLP classification to different data distributions.} \label{tab:MLP_transfer} \vspace{-10pt} \end{table}
[ [ "Dataset #", "W/O L1", "DGS", "AUTOLOSS" ], [ "1", ".1337", ".1019", ".1037" ], [ "2", ".1294", ".1035", ".1016" ], [ "3", ".1318", ".1022", ".0997" ] ]
0.461538
null
null
1
1810.02442v1
18
[ 208.13400268554688, 72.198974609375, 403.86700439453125, 144.3289794921875 ]
\begin{table} \centering \begin{tabular}{c|c} \hline Feature to drop & \texttt{MSE} \\ \hline \hline (2) normalized gradient magnitude & .086 \\ \hline (3) loss values& .101 \\ \hline (4) validation metrics & .085 \\ \hline None & \textbf{.070} \\ \hline \end{tabular} \caption{The MSE performance on the regression task when some features presented in \S\ref{sec:applications} are ablated.} \label{tab:feature_importance} \end{table}
[ [ "Feature to drop", "MSE" ], [ "(2) normalized gradient magnitude", ".086" ], [ "(3) loss values", ".101" ], [ "(4) validation metrics", ".085" ], [ "None", ".070" ] ]
0.641096
null
null
0
1808.09545v1
4
[ 402.7860107421875, 132.6719970703125, 467.1180114746094, 188.86102294921875 ]
\begin{table}[!htbp] \begin{center} \begin{small} \begin{tabular}{|c|c|c|} \hline TID & A & B \\\hline $t_1$ & $a_1$ & $b_1$ \\\hline $t_2$ & $a_1$ & $b_1$ \\\hline $t_3$ & $a_1$ & $b_2$ \\\hline $t_4$ & $a_1$ & $b_3$ \\\hline $t_5$ & $a_2$ & $b_2$ \\\hline \end{tabular} \end{small} \caption{\label{tb:1f1d}An example of data instance $D$ ($FD: A\rightarrow B$)} \end{center} \end{table}
[ [ "TID", "A", "B" ], [ "t1", "a1", "b1" ], [ "t2", "a1", "b1" ], [ "t3", "a1", "b2" ], [ "t4", "a1", "b3" ], [ "t5", "a2", "b2" ] ]
0.626506
null
null
1
1808.09545v1
7
[ 335.9429931640625, 300.5929870605469, 536.7839965820312, 365.74798583984375 ]
\begin{table} \begin{center} \begin{tabular}{|c|c|}\hline Target attribute set & Covered instance vertex \\\hline $\{AB\}$& $v_{1}$, $v_{2}$, $v_{3}$ (3 vertices)\\\hline $\{A\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{4}$ (4 vertices)\\\hline $\{B\}$& $v_{1}$, $v_{2}$, $v_{3}$, $v_{5}$ (4 vertices)\\\hline $\{C\}$& $v_{5}$, $v_{6}$ (2 vertices)\\\hline $\{BC\}$& $v_{5}$, $v_{7}$ (2 vertices)\\\hline \end{tabular} \caption{\label{table:target} An example of target vertex sets} \end{center} \vspace{-0.3in} \end{table}
[ [ "Target attribute set", "Covered instance vertex" ], [ "{AB}", "v 1, v 2, v (3 vertices)\n3" ], [ "{A}", "v 1, v 2, v 3, v (4 vertices)\n4" ], [ "{B}", "v 1, v 2, v 3, v (4 vertices)\n5" ], [ "{C}", "v 5, v (2 vertices)\n6" ], [ "{BC}", "v 5, v (2 vertices)\n7" ] ]
0.372414
null
null
0
1508.07096v1
6
[ 108, 453.9549865722656, 580.7239990234375, 476.66900634765625 ]
\begin{table}[h!] \centering \begin{tabular}[h!]{|c|c|c|c|c|c|}\hline Algorithms & Sequential & Weight Averaging & Majority Vote & Synchronous Update & Asynchronous Update \\ \hline Error Rate (\%) & 1.08 & 0.98 & 1.04 & 0.97 & 1.06 \\ \hline \end{tabular} \caption{Test error rate using different algorithms for 200 epochs of fine tuning. Weight averaging and majority vote algorithms collect final weights from $7$ independent runs of the standard dropout algorithms. Synchronous update and asynchronous update algorithms combine results from two processes after each input instance. Dropout rate is 50\% for all algorithms. } \end{table}
[ [ "Algorithms", "Sequential", "Weight Averaging", "Majority Vote", "Synchronous Update", "Asynchronous Update" ], [ "Error Rate (%)", "1.08", "0.98", "1.04", "0.97", "1.06" ] ]
0.420712
null
null
0
1908.00868v2
3
[ 70.93057141985211, 52.27398681640625, 282.1504385811942, 115.83502197265625 ]
\begin{table} \centering \begin{tabular}{| l || r | } \hline {\bf SVM}&{\bf Ecology}\\ \hline Data point &Species\\ KKT Multiplier & Species Abundance\\ Feature Space & Trait Space\\ Kernel & Niche Overlap\\ Support Vectors & Species that survive in ecosystem\\ \hline \end{tabular} \caption{Conceptual mapping between SVMs and ecology \label{ecotable} } \end{table}
[ [ "SVM", "Ecology" ], [ "Data point\nKKT Multiplier\nFeature Space\nKernel\nSupport Vectors", "Species\nSpecies Abundance\nTrait Space\nNiche Overlap\nSpecies that survive in ecosystem" ] ]
0.598958
null
null
0
1802.00382v1
4
[ 307.76683807373047, 169.9580078125, 525.1287536621094, 257.23004150390625 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.6 cm}|p{1.2 cm}|p{1.4 cm}|l|l|} \hline \bf Source & \bf Labels & \bf Methods & \bf Rec & \bf F1\\ \hline \hline Gehrmann et al., 2017 & 10 own labels & LR 3-gram & 1.6K & 34.6 \\ \hline Gehrmann et al., 2017 & 10 own labels & CNN & 1.6K & 76 \\ \hline This Paper & 17 ICD-9 & CNN & 5K & 76.2 \\ \hline \end{tabular} \end{center} \caption{Classification of MIMIC clinical notes into labels representing high level phenotype categories (20 epochs for both CNN models)} \label{table:CNN_5k} \end{table}
[ [ "Source", "Labels", "Methods", "Rec", "F1" ], [ "Gehrmann\net al., 2017", "10 own\nlabels", "LR\n3-gram", "1.6K", "34.6" ], [ "Gehrmann\net al., 2017", "10 own\nlabels", "CNN", "1.6K", "76" ], [ "This Paper", "17 ICD-\n9", "CNN", "5K", "76.2" ] ]
0.677686
null
null
1
1802.00382v1
4
[ 307.76683807373047, 483.7920227050781, 525.1287536621094, 571.0640258789062 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.7 cm}|p{3 cm}|l|l|} \hline \bf Source & \bf Methods & \bf Recs & \bf F1 \\ \hline \hline This Paper & LSTM& 5k &64.6 \\ This Paper & LSTM-Attention & 5k& 67 \\ \hline This Paper & Hierarchical LSTM-Attention & 5k & 67.6 \\ \hline This Paper & CNN& 5k& 69 \\ This Paper & CNN-Attention& 5k & 72.8 \\ \hline \end{tabular} \end{center} \caption{Classification of MIMIC clinical notes into Level 1 ICD-9 Codes. Evaluation with 17 classes, 5k records, 5 epochs} \label{table:attention} \end{table}
[ [ "Source", "Methods", "Recs", "F1" ], [ "This Paper\nThis Paper", "LSTM\nLSTM-Attention", "5k\n5k", "64.6\n67" ], [ "This Paper", "Hierarchical LSTM-\nAttention", "5k", "67.6" ], [ "This Paper\nThis Paper", "CNN\nCNN-Attention", "5k\n5k", "69\n72.8" ] ]
0.598802
null
null
2
1802.00382v1
5
[ 72.03700256347656, 504.38702392578125, 290.2309926350911, 604.0140380859375 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.8 cm}|p {2.6 cm}|l|l|} \hline \bf Source & \bf Methods & \bf N. Rec & \bf F1\\ \hline \hline Perotte et al., 2014& Hierarchal SVM (all codes) & 22K & 39.5 \\ \hline Previous Project Reports\footnotemark& LSTM & 32K & 41.6 \\ \hline This paper &Baseline & 46K & 35 \\ \hline This paper &CNN & 46K & 72.4 \\ \hline \end{tabular} \end{center} \caption{\label{font-table} Classification of MIMIC clinical notes into most common Level 5 ICD-9 Codes} \label{table:top_20} \end{table}
[ [ "Source", "Methods", "N. Rec", "F1" ], [ "Perotte et\nal., 2014", "Hierarchal SVM\n(all codes)", "22K", "39.5" ], [ "Previous\nProject\nReports15", "LSTM", "32K", "41.6" ], [ "This paper", "Baseline", "46K", "35" ], [ "This paper", "CNN", "46K", "72.4" ] ]
0.724576
null
null
3
1802.00382v1
5
[ 309.1499938964844, 63.00799560546875, 523.6692016601562, 113.6180419921875 ]
\begin{table}[h] \begin{center} \begin{tabular}{|p{1.8 cm}|l|l|l|} \hline \bf Source & \bf Methods & \bf Recs &\bf F1 \\ \hline \hline This Paper & Baseline & 52.6K& 53 \\ This Paper &CNN & 52.6K& 79.7 \\ This Paper &CNN w/ Attention & 52.6K & 78.2 \\ \hline \end{tabular} \end{center} \caption{\label{font-table} Classification of MIMIC clinical notes into 17 Level 1 ICD-9 Codes} \label{table:full_data} \end{table}
[ [ "Source", "Methods", "Recs", "F1" ], [ "This Paper\nThis Paper\nThis Paper", "Baseline\nCNN\nCNN w/ Attention", "52.6K\n52.6K\n52.6K", "53\n79.7\n78.2" ] ]
0.432749
null
null
0
1907.13308v2
15
[ 335.26256016322543, 612.7529907226562, 533.4745570591518, 683.8040161132812 ]
\begin{table}[!ht] \centering \caption{Outcomes of Holm post-hoc test for AGGLO-2} \small { \begin{tabular}{|l|l|c|c|c|} \hline $ i $ & AGGLO-2 vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\ \hline 1 & SVM & 2.9764 & 0.0029 & 0.01 \\ 2 & Decision tree & -1.4174 & 0.1564 & 0.0125 \\ 3 & Naive Bayes & -0.6143 & 0.5390 & 0.0167 \\ 4 & KNN & 0.4725 & 0.6366 & 0.025 \\ 5 & Online GFMM & -0.2835 & 0.7768 & 0.05 \\ \hline \end{tabular} } \label{holm-agglo} \end{table}
[ [ "i", "AGGLO-2 vs.", "z\ni", "p\ni", "α\nk −i" ], [ "1\n2\n3\n4\n5", "SVM\nDecision tree\nNaive Bayes\nKNN\nOnline GFMM", "2.9764\n-1.4174\n-0.6143\n0.4725\n-0.2835", "0.0029\n0.1564\n0.5390\n0.6366\n0.7768", "0.01\n0.0125\n0.0167\n0.025\n0.05" ] ]
0.475452
null
null
1
1907.13308v2
16
[ 65.57342638288226, 77.0419921875, 277.1364310128348, 148.093017578125 ]
\begin{table}[!ht] \centering \caption{Outcomes of Holm post-hoc test for incremental learning based GFMM} \small { \begin{tabular}{|l|l|c|c|c|} \hline $ i $ & Online GFMM vs. & $ z_i $ & $ p_i $ & $ \cfrac{\alpha}{k - i} $\\ \hline 1 & SVM & 3.2599 & 0.0011 & 0.01 \\ 2 & Decision tree & -1.1339 & 0.2568 & 0.0125 \\ 3 & KNN & 0.7559 & 0.4497 & 0.0167 \\ 4 & Naive Bayes & -0.3308 & 0.7408 & 0.025 \\ 5 & AGGLO-2 & 0.2835 & 0.7768 & 0.05 \\ \hline \end{tabular} } \label{holm-oln} \end{table}
[ [ "i", "Online GFMM vs.", "z\ni", "p\ni", "α\nk −i" ], [ "1\n2\n3\n4\n5", "SVM\nDecision tree\nKNN\nNaive Bayes\nAGGLO-2", "3.2599\n-1.1339\n0.7559\n-0.3308\n0.2835", "0.0011\n0.2568\n0.4497\n0.7408\n0.7768", "0.01\n0.0125\n0.0167\n0.025\n0.05" ] ]
0.475196
null
null
2
1907.13308v2
5
[ 315.9509497748481, 209.1729736328125, 559.0630560980903, 398.06500244140625 ]
\begin{table}[!ht] \caption{Datasets were used for experiments} \label{table1} \centering \begin{tabular}{|l|L{2cm}|C{1.4cm}|C{1.4cm}|C{1.3cm}|} \hline ID & Dataset & No. samples & No. features & No. classes \\ \hline 1 & Circle & 1000 & 3 & 2 \\ \hline 2 & Complex9 & 3031 & 2 & 9 \\ \hline 3 & Diagnostic Breast Cancer & 569 & 30 & 2 \\ \hline 4 & Glass & 214 & 9 & 6 \\ \hline 5 & Ionosphere & 351 & 34 & 2 \\ \hline 6 & Iris & 150 & 4 & 3 \\ \hline 7 & Ringnorm & 7400 & 20 & 2 \\ \hline 8 & Segmentation & 2310 & 19 & 7 \\ \hline 9 & Spherical\_5\_2 & 250 & 2 & 5 \\ \hline 10 & Spiral & 1000 & 2 & 2 \\ \hline 11 & Thyroid & 215 & 5 & 3 \\ \hline 12 & Twonorm & 7400 & 20 & 2 \\ \hline 13 & Waveform & 5000 & 21 & 3 \\ \hline 14 & Wine & 178 & 13 & 3 \\ \hline 15 & Yeast & 1484 & 8 & 10 \\ \hline 16 & Zelnik6 (Toy dataset) & 238 & 2 & 3 \\ \hline \end{tabular} \end{table}
[ [ "ID", "Dataset", "No.\nsamples", "No. features", "No. classes" ], [ "1", "Circle", "1000", "3", "2" ], [ "2", "Complex9", "3031", "2", "9" ], [ "3", "Diagnostic\nBreast Cancer", "569", "30", "2" ], [ "4", "Glass", "214", "9", "6" ], [ "5", "Ionosphere", "351", "34", "2" ], [ "6", "Iris", "150", "4", "3" ], [ "7", "Ringnorm", "7400", "20", "2" ], [ "8", "Segmentation", "2310", "19", "7" ], [ "9", "Spherical 5 2", "250", "2", "5" ], [ "10", "Spiral", "1000", "2", "2" ], [ "11", "Thyroid", "215", "5", "3" ], [ "12", "Twonorm", "7400", "20", "2" ], [ "13", "Waveform", "5000", "21", "3" ], [ "14", "Wine", "178", "13", "3" ], [ "15", "Yeast", "1484", "8", "10" ], [ "16", "Zelnik6 (Toy\ndataset)", "238", "2", "3" ] ]
0.994911
null
null
0
2201.13299v4
10
[ 57.19740676879883, 218.53099060058594, 287.6843566894531, 242.64083862304688 ]
\begin{table}[ht] \caption{Performance of different ablated RES models on the ATOM3D dataset.}\label{table:resr_ab} \vspace{0.3em} \centering \resizebox{\linewidth}{!}{ \begin{tabular}{l|cccc} \toprule %\hline Model & No DirectedLinear & No Interaction & No Equivariance & DW-GNN \\ \midrule Acc \% & 47.3 & 47.7 & 33.0 & \textbf{50.2}\\ \bottomrule % \hline \end{tabular} } \end{table}
[ [ "Model", "No DirectedLinear No Interaction No Equivariance DW-GNN" ], [ "Acc %", "47.3 47.7 33.0 50.2" ] ]
0.890052
null
null
0
1902.10027v3
5
[ 329.3611145019531, 53.42999267578125, 544.3990173339844, 137.218994140625 ]
\begin{table}[t] %\vspace*{-0.1in} \centering \caption{Notations used in \FT approach} \vspace*{-0.1in} \label{table:notation} \begin{tabular}{| c | p{6cm} | } \hline $G$ & A grammar used to generate test inputs \\ \hline $\mathbb{I}_{G}$ & All inputs described by a grammar $G$ \\ \hline $\mathbb{T}_{G}$ & The derivation trees of any input $I \in \mathbb{I}_{G}$ \\ \hline $f_1, f_2$ & Classifiers under test. \\ \hline $J$ & A pre-determined Jaccard Threshold \\ \hline $\tau_G$ & A function $\mathbb{I}_{G} \rightarrow \mathbb{T}_{G}$ which outputs the derivation tree of an input $I \in \mathbb{I}_{G}$ \\ \hline $S$ & The initial input to the directed search. $S$ conforms to grammar $G$ \\ \hline % $Perturb$ & The perturbation function \\ \hline \end{tabular} \vspace*{-0.15in} \end{table}
[ [ "G", "A grammar used to generate test inputs" ], [ "IG", "All inputs described by a grammar G" ], [ "TG", "The derivation trees of any input I ∈IG" ], [ "f1, f2", "Classifiers under test." ], [ "J", "A pre-determined Jaccard Threshold" ], [ "τG", "A function IG → TG which outputs the derivation\ntree of an input I ∈IG" ], [ "S", "The initial input to the directed search. S conforms\nto grammar G" ] ]
0.568681
null
null
1
1902.10027v3
8
[ 327.6671997070313, 53.42999267578125, 546.0927856445312, 103.15802001953125 ]
\begin{table}[t] %\vspace*{-0.1in} \centering \caption{Notations used in Evaluation} \vspace*{-0.1in} \label{table:eval-notation} \begin{tabular}{| c | p{6cm} | } \hline \#inputs & Total number of \revise{unique} generated test inputs \\ \hline \#err & Total number of \revise{unique} erroneous inputs \\ \hline $err_r$ & $\frac{\#err}{\#inputs}$ \\ \hline Imp\% & Improvement of $err_r$ of \FT with respect to the $err_r$ of random test\\ \hline \end{tabular} \vspace*{-0.15in} \end{table}
[ [ "#inputs", "Total number of unique generated test inputs" ], [ "#err", "Total number of unique erroneous inputs" ], [ "errr", "#err\n#inputs" ], [ "Imp%", "Improvement of errr of OGMA with respect to the\nerrr of random test" ] ]
0.940568
null
null
2
1902.10027v3
9
[ 70.71820220947265, 145.3060302734375, 275.04180908203125, 183.0799530029297 ]
\begin{table}[h] \caption{\revise{Jaccard Thresholds}} \centering \begin{tabular}{| c | c | c | c | c | c | c | c |} \hline Grammars & \multicolumn{1}{l|}{A} & \multicolumn{1}{l|}{B} & \multicolumn{1}{l|}{C} & \multicolumn{1}{l|}{D} & \multicolumn{1}{l|}{E} & \multicolumn{1}{l|}{F} \\ \hline $\mathbb{R}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.15 & 0.15 \\ \hline $\mathbb{U}$-$\mathbb{A}$ & 0.15 & 0.15 & 0.1 & 0.15 & 0.1 & 0.1 \\ \hline $\mathbb{R}$-$\mathbb{U}$ & 0.3 & 0.15 & 0.15 & 0.3 & 0.15 & 0.15 \\ \hline \end{tabular} \label{table:thresholds} \end{table}
[ [ "Grammars", "A", "B", "C", "D", "E", "F" ], [ "R-A", "0.15", "0.15", "0.1", "0.15", "0.15", "0.15" ], [ "U-A", "0.15", "0.15", "0.1", "0.15", "0.1", "0.1" ], [ "R-U", "0.3", "0.15", "0.15", "0.3", "0.15", "0.15" ] ]
0.868914
null
null
3
1902.10027v3
11
[ 54.1738338470459, 698.4149780273438, 293.8263346354167, 745.406982421875 ]
\begin{table}[h] \caption{Sensitivity of \FT w.r.t. Grammars} \vspace*{-0.2in} \label{classifiers} \begin{center} \begin{tabular}{| c | c | c | c | c |} \hline & \multicolumn{2}{c|}{Grammar A - F} & \multicolumn{2}{c|}{$G_{bad}$} \\ \hline & \%unique inps & \%error inps & \%unique inps & \%error inps \\ \hline $\mathbb{R}$-$\mathbb{A}$ & 97\% & 88\% & 52\% & 22\% \\ \hline $\mathbb{U}$-$\mathbb{A}$ & 96\% & 84\% & 49\% & 34\% \\ \hline $\mathbb{R}$-$\mathbb{U}$ & 96\% & 66\% & 51\% & 28\% \\ \hline \end{tabular} \end{center} \label{table:badGrammar} \vspace*{-0.1in} \end{table}
[ [ "", "Grammar A - F", null, "Gbad", null ], [ "", "%unique inps", "%error inps", "%unique inps", "%error inps" ], [ "R-A", "97%", "88%", "52%", "22%" ], [ "U-A", "96%", "84%", "49%", "34%" ], [ "R-U", "96%", "66%", "51%", "28%" ] ]
0.780488
null
null
0
2002.10904v3
14
[ 135.67627970377603, 265.01898193359375, 487.0430145263672, 319.81298828125 ]
\begin{table} \centering \caption{Summary statistics for pretest touches by treatment group.\label{tab:pretest}}. \begin{tabular}{ l c c c c c | c c c c c } \hline & \multicolumn{5}{c}{Experiment 1} & \multicolumn{5}{c}{Experiment 2} \\ & CT & HH & HL & LH & LL & CT & HH & HL & LH & LL\\ \hline Mean & 31.3 & 34.3 & 32.3 & 30.9 & 30.2 & 32.4 & 33.7 & 33.1 & 34.4 & 32.6 \\ SD & 13.4 & 14.6 & 13.6 & 14.3 & 12.6 & 13.6 & 13.1 & 13.5 & 14.2 & 13.6 \\ N & 213 & 150 & 219 & 230 & 257 & 363 & 394 & 416 & 423 & 395 \\ %Shapiro-Wilk & 3e-08 & 4e-4 & 3e-4 & 1e-4 & 8e-05 & 1e-8 & 7e-4 & 5e-8 & 2e-7 & 3e-9\\ \hline \end{tabular} \end{table}
[ [ "CT HH HL LH LL", "CT HH HL LH LL" ], [ "Mean 31.3 34.3 32.3 30.9 30.2\nSD 13.4 14.6 13.6 14.3 12.6\nN 213 150 219 230 257", "32.4 33.7 33.1 34.4 32.6\n13.6 13.1 13.5 14.2 13.6\n363 394 416 423 395" ] ]
0.582781
null
null
0
2404.13079v1
13
[ 118.56900024414062, 89.08099365234375, 493.4309997558594, 155.33197021484375 ]
\begin{table}[htbp] \centering \caption{Digikala dataset Results} \label{tab:table4} \begin{tabular}{|c|ccc|ccc|} \hline \multirow{3}{*}{Model} & \multicolumn{3}{c|}{2 class} & \multicolumn{3}{c|}{3 class} \\ \cline{2-7} & \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} & \multicolumn{1}{c|}{balanced} & \multicolumn{2}{c|}{imbalance} \\ \cline{2-7} & \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score & \multicolumn{1}{c|}{accuracy} & \multicolumn{1}{c|}{accuracy} & F1-score \\ \hline ParsBERT & 68 & 87 & 72 & 57 & 62 & 55 \\ ParsBERT + GCN & 70 & 91.1 & 74 & 58 & 63.9 & 55 \\ ParsBERT + RGCN & 70.36 & 91.17 & 74.15 & 58.29 & 63.94 & 55.11\\ \hline \end{tabular} \end{table}
[ [ "Model", "2 class", null, null, "3 class", null, null ], [ null, "balanced", "imbalance", null, "balanced", "imbalance", null ], [ null, "accuracy", "accuracy", "F1-score", "accuracy", "accuracy", "F1-score" ], [ "ParsBERT\nParsBERT + GCN\nParsBERT + RGCN", "68 87 72\n70 91.1 74\n70.36 91.17 74.15", null, null, "57 62 55\n58 63.9 55\n58.29 63.94 55.11", null, null ] ]
0.390681
null
null
0
2310.01739v1
44
[ 77.89800262451172, 302.9320068359375, 517.3779907226562, 391.2010192871094 ]
\begin{table}[!h] \centering \caption{Asymptotic complexities of various randomized pivoting-based skeleton selection algorithms based on \Cref{algo:sketch_pivot_CUR_general}.} \label{tab:complexity_rand_pivot} \begin{tabular}{c|c|c} \hline Algorithm & Row basis approximator construction (Line 1,2) & Pivoting (Line 3) \\ \hline Rand-LUPP & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\ Rand-LUPP-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\ \hline Rand-CPQR & $O(T_s(l,\Ab))$ & $O(n l^2)$ \\ Rand-CPQR-1piter & $O(T_s(l,\Ab) + \nnz(\Ab) l)$ & $O(n l^2)$ \\ \hline RSVD-DEIM & $O\rbr{T_s(l,\Ab) + (m+n)l^2 + \nnz(\Ab) l}$ & $O(nl^2)$ \\ \hline \end{tabular} \end{table}
[ [ "Algorithm", "Row basis approximator construction (Line 1,2)", "Pivoting (Line 3)" ], [ "Rand-LUPP\nRand-LUPP-1piter", "O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns", "O(nl2)\nO(nl2)" ], [ "Rand-CPQR\nRand-CPQR-1piter", "O(T (l, A))\ns\nO(T (l, A) + nnz(A)l)\ns", "O(nl2)\nO(nl2)" ], [ "RSVD-DEIM", "O (T (l, A) + (m + n)l2 + nnz(A)l)\ns", "O(nl2)" ] ]
0.670194
null
null
1
2310.01739v1
90
[ 165.48599243164062, 90.6300048828125, 429.78997802734375, 134.7650146484375 ]
\begin{table}[t] % \begin{wraptable}{hr}{0.65\columnwidth} % \vspace{-1em} \centering \caption{DAC helps FixMatch when the unlabeled data is scarce.} \vspace{-0.5em} \label{table:combining_with_SSL} \begin{tabular}{c|ccc} \hline Number of Unlabeled Data & 5000 & 10000 & 20000 \\ \hline FixMatch & 67.74 & 69.23 & 70.76 \\ FixMatch + DAC ($\lambda=1$) & \textbf{71.24} & \textbf{72.7} & \textbf{74.04} \\ \hline \end{tabular} % \end{wraptable} \end{table}
[ [ "Number of Unlabeled Data", "5000 10000 20000" ], [ "FixMatch\nFixMatch + DAC (λ = 1)", "67.74 69.23 70.76\n71.24 72.7 74.04" ] ]
0.776256
null
null
0
2307.04012v1
16
[ 210.34889221191406, 110.8193359375, 401.6507568359375, 243.7833251953125 ]
\begin{table}[] \begin{tabular}{r|c|} \cline{2-2} & \textbf{\begin{tabular}[c]{@{}c@{}}CCSD(T) Error\\ kcal/mol\end{tabular}} \\ \hline \multicolumn{1}{|r|}{\textbf{AN1-1x dx}} & 6.44 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 6.98 \\ \hline \multicolumn{1}{|r|}{\textbf{GEOM}} & 16.46 \\ \hline \multicolumn{1}{|r|}{\textbf{Transition1x}} & 11.73 \\ \hline \multicolumn{1}{|r|}{\textbf{QM7-x}} & 8.26 \\ \hline \multicolumn{1}{|r|}{\textbf{Qmugs}} & 14.69 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1ccx}} & 13.9 \\ \hline \end{tabular} \caption{The error for the CCSD(T) data after first fitting the six datasets. The ANI-1ccx result is when no previous training is carried out. } \label{tab:ind_err}. \end{table}
[ [ "", "CCSD(T) Error\nkcal/mol" ], [ "AN1-1x dx", "6.44" ], [ "ANI-1x tz", "6.98" ], [ "GEOM", "16.46" ], [ "Transition1x", "11.73" ], [ "QM7-x", "8.26" ], [ "Qmugs", "14.69" ], [ "ANI-1ccx", "13.9\n." ] ]
0.506394
null
null
1
2307.04012v1
19
[ 190.17642211914062, 348.9042205810547, 421.82335408528644, 467.4153747558594 ]
\begin{table}[] \begin{tabular}{r|c|} \cline{2-2} & \textbf{Number of Structures} \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x dz}} & 855,028 \\ \hline \multicolumn{1}{|r|}{\textbf{ANI-1x tz}} & 732,154 \\ \hline \multicolumn{1}{|r|}{\textbf{Qmugs}} & 103,374 \\ \hline \multicolumn{1}{|r|}{\textbf{QM7-x}} & 1,085,249 \\ \hline \multicolumn{1}{|r|}{\textbf{GEOM}} & 122,552 \\ \hline \multicolumn{1}{|r|}{\textbf{Transition-1x}} & 251,095 \\ \hline \multicolumn{1}{|r|}{\textbf{Total}} & 3,149,452 \\ \hline \end{tabular} \caption{The number of structures included from each dataset. } \label{tab:AL_DS} \end{table}
[ [ "", "Number of Structures" ], [ "ANI-1x dz", "855,028" ], [ "ANI-1x tz", "732,154" ], [ "Qmugs", "103,374" ], [ "QM7-x", "1,085,249" ], [ "GEOM", "122,552" ], [ "Transition-1x", "251,095" ], [ "Total", "3,149,452" ] ]
0.682216
null
null
0
2212.03481v1
9
[ 198.73899841308594, 294.1889953613281, 410.39809163411456, 368.4110107421875 ]
\begin{table}[h!] \centering \begin{tabular}{|l|l|l|} \hline \textbf{Station} & \textbf{\# of samples} & \textbf{Execution time} \\ \hline 1 & 84 & 13h 46min \\ \hline 2 & 94 & 24h 26min \\ \hline 3 & 38 & 6h 37min \\ \hline Total & 216 & 44h 49min\\ \hline \end{tabular} \label{train1:time} \caption{Station-wise and total number of samples and execution time of the nf-core HLA typing train} \end{table}
[ [ "Station", "# of samples", "Execution time" ], [ "1", "84", "13h 46min" ], [ "2", "94", "24h 26min" ], [ "3", "38", "6h 37min" ], [ "Total", "216", "44h 49min" ] ]
0.655629
null
null
1
2212.03481v1
10
[ 89.46900177001953, 392.0169982910156, 522.531005859375, 481.0830078125 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|c|c|c|} \hline \textbf{Station} & \textbf{pre\_run} & \textbf{Execution time} & \textbf{post\_run} & \textbf{Acc}& \textbf{Sens}\\ \hline 1 & 0 / 0MB / 10s & 11h 26m 29s & 8 / 625 MB / 1min 2s & 0.737 & 0.737\\ \hline 2 & 8 / 625 MB / 59s & 12h 47m 24s & 13 / 625 MB / 1m 5s & 0.829 & 0.784\\ \hline 3 & 13 / 625 MB / 57s & 12h 55m 22s & 3 / 654.64MB / 1m 1s & 0.681 & 0.69\\ \hline \textbf{Total} & time 2m 6s & 1d 13h 9m 8s & time 3m 25s & 0.68 & 0.69 \\ \hline \textbf{Central} & 0 / 0MB / 8.817s & 3d 23h 46m 25s & 3 / 654.64MB / 1m 1s & 0.684 & 0.625 \\ \hline \end{tabular} \caption{Execution time and performance of ISIC showcase model at different stations. \textit{pre\_run} and \textit{post\_run} protocols are security protocol steps. Number of files / file size / execution time is reported at each station in the protocol columns. Weighted accuracy (Acc) and weighted sensitivity (Sens) is averaged over all classes and reported from the last epoch at each station.} \label{exp2:time} \end{table}
[ [ "Station", "pre run", "Execution time", "post run", "Acc", "Sens" ], [ "1", "0 / 0MB / 10s", "11h 26m 29s", "8 / 625 MB / 1min 2s", "0.737", "0.737" ], [ "2", "8 / 625 MB / 59s", "12h 47m 24s", "13 / 625 MB / 1m 5s", "0.829", "0.784" ], [ "3", "13 / 625 MB / 57s", "12h 55m 22s", "3 / 654.64MB / 1m 1s", "0.681", "0.69" ], [ "Total", "time 2m 6s", "1d 13h 9m 8s", "time 3m 25s", "0.68", "0.69" ], [ "Central", "0 / 0MB / 8.817s", "3d 23h 46m 25s", "3 / 654.64MB / 1m 1s", "0.684", "0.625" ] ]
0.650362
null
null
2
2212.03481v1
19
[ 80.77300262451172, 72.198974609375, 531.2269897460938, 695.6600341796875 ]
\begin{table}[H] \centering \begin{tabular}{|l|l|} \hline \textbf{Term} & \textbf{Description} \\ \hline $A$ & Algorithm files defined by the User \\ \hline AK & Actinic keratosis \\ \hline BCC & Basal cell carcinoma \\ \hline BKL & Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis) \\ \hline $C_I$ & Container created of image $I$ \\ \hline $CR$ & Container Registry \\ \hline $D_{i}$ & Data (A,Q, and Model / Results) of party $i$ as cargo of the train\\ \hline DF & Dermatofibroma \\ \hline DNN & Deep Neural Network \\ \hline $DS_i$ & Digital Signature of party $i$ \\ \hline $\mathcal{E}_{D}$ & Encrypted value of data $D$\\ \hline GB & Gigabytes \\ \hline GPU & Graphical Processing Unit \\ \hline h & hours \\ \hline HLA & Human Leukocyte Antigen \\ \hline $I$ & Base image \\ \hline $ID_i$ & $ID$ of party $i$ \\ \hline $ID_U$ & Identifier of user $U$ \\ \hline $K$ & Random generated number of length $l$ as session key of the analysis \\ \hline KB & Kilobytes \\ \hline $N$ & Random generated number of length $l$ as session $ID$ of the analysis\\ \hline NV & Melanocytic nevus \\ \hline m & minutes \\ \hline MEL& Melanoma \\ \hline MHC& Major Histocompatibility Complex \\ \hline PDR& Private Docker Registry \\ \hline PHT& Personal Health Train \\ \hline $PK{_i}$ & Public key of the party $i$ \\ \hline $Q$ & Query operated on database defined by the User\\ \hline $R$ & Defined Route of the train defined by the User\\ \hline RE & Result extraction process\\ \hline $S$ & Station \\ \hline SCC & Squamous cell carcinoma \\ \hline $SK{_i}$ & Private key of the party $i$ \\ \hline SMPC & Secure Multi-Party Computation \\ \hline TB & Train building process \\ \hline $U$ & User \\ \hline $UI$ & central User Interface do manage trains and submit algorithms\\ \hline $URI$ & Uniform Resource Identifier \\ \hline VASC & Vascular lesion \\ \hline vCPU & virtual Central Processing Unit \\ \hline \end{tabular}\label{supp:notations} \caption{Notations and abbreviations used in this paper.} \end{table}
[ [ "Term", "Description" ], [ "A", "Algorithm files defined by the User" ], [ "AK", "Actinic keratosis" ], [ "BCC", "Basal cell carcinoma" ], [ "BKL", "Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis)" ], [ "C\nI", "Container created of image I" ], [ "CR", "Container Registry" ], [ "D\ni", "Data (A,Q, and Model / Results) of party i as cargo of the train" ], [ "DF", "Dermatofibroma" ], [ "DNN", "Deep Neural Network" ], [ "DS\ni", "Digital Signature of party i" ], [ "ED", "Encrypted value of data D" ], [ "GB", "Gigabytes" ], [ "GPU", "Graphical Processing Unit" ], [ "h", "hours" ], [ "HLA", "Human Leukocyte Antigen" ], [ "I", "Base image" ], [ "ID\ni", "ID of party i" ], [ "ID\nU", "Identifier of user U" ], [ "K", "Random generated number of length l as session key of the analysis" ], [ "KB", "Kilobytes" ], [ "N", "Random generated number of length l as session ID of the analysis" ], [ "NV", "Melanocytic nevus" ], [ "m", "minutes" ], [ "MEL", "Melanoma" ], [ "MHC", "Major Histocompatibility Complex" ], [ "PDR", "Private Docker Registry" ], [ "PHT", "Personal Health Train" ], [ "PK\ni", "Public key of the party i" ], [ "Q", "Query operated on database defined by the User" ], [ "R", "Defined Route of the train defined by the User" ], [ "RE", "Result extraction process" ], [ "S", "Station" ], [ "SCC", "Squamous cell carcinoma" ], [ "SK\ni", "Private key of the party i" ], [ "SMPC", "Secure Multi-Party Computation" ], [ "TB", "Train building process" ], [ "U", "User" ], [ "UI", "central User Interface do manage trains and submit algorithms" ], [ "URI", "Uniform Resource Identifier" ], [ "VASC", "Vascular lesion" ], [ "vCPU", "virtual Central Processing Unit" ] ]
0.973525
null
null
0
1912.10204v1
3
[ 56.18338203430176, 305.4561462402344, 290.3208923339844, 358.287353515625 ]
\begin{table} \vspace{2ex} \resizebox{\columnwidth}{!}{ \begin{tabular}{l | c | c | c} \toprule \textbf{Dataset} & \textbf{\# instances} & \textbf{\# authors} & \textbf{\# texts/author}\\ \midrule \textit{development} & 1000 & 50 & 20\\ \textit{cross-validation} & 3500 & 50 & 70\\ \textit{holdout test} & 500 & 50 & 10\\ \bottomrule \end{tabular} } \centering \caption{Distribution of instances in the different datasets} \label{dist} \end{table}
[ [ "Dataset", "# instances", "# authors", "# texts/author" ], [ "development\ncross-validation\nholdout test", "1000\n3500\n500", "50\n50\n50", "20\n70\n10" ] ]
0.513369
null
null
0
2109.12567v1
3
[ 72, 479.2279968261719, 501.5459899902344, 523.2630004882812 ]
\begin{table}[ht] \begin{tabular}{|l|l|l|l|} \texttt{Metric} & \texttt{c = arrayfun(@(idx)} & \texttt{s = "TestResult" +} & \texttt{String advantage} \\ \hline \texttt{Characters of M-code} & \texttt{78 chars} & \texttt{24 chars} & \texttt{3.25x shorter} \\ \texttt{Duration (sec)} & \texttt{0.01640} & \texttt{0.0003634} & \texttt{45x faster} \\ \texttt{Bytes} & \texttt{129,786} & \texttt{70,096} & \texttt{1.85x smaller} \end{tabular} \caption{Performance comparison of string building for cell and string array} \label{table:StringBuilding} \end{table}
[ [ "Metric", "c = arrayfun(@(idx)", "s = \"TestResult\" +", "String advantage" ], [ "Characters of M-code\nDuration (sec)\nBytes", "78 chars\n0.01640\n129,786", "24 chars\n0.0003634\n70,096", "3.25x shorter\n45x faster\n1.85x smaller" ] ]
0.371981
null
null
1
2109.12567v1
6
[ 72, 581.281005859375, 529.18798828125, 614.406982421875 ]
\begin{table}[ht] \begin{tabular}{|l|l|l|l|l|} \texttt{Metric} & \texttt{sprintf} & \texttt{{[}num2str(1) ` ' a{]}} & \texttt{1 + " " + a} & \texttt{Advantage over sprintf} \\ \hline \texttt{Chars of M-code} & \texttt{22 chars} & \texttt{18 chars} & \texttt{11 chars} & \texttt{2x as compact} \\ \texttt{Duration (sec)} & \texttt{0.00001375} & \texttt{0.00001227} & \texttt{0.000001693} & \texttt{8.1x faster} \end{tabular} \caption{Comparison of MATLAB text concatenation.} \label{table:Concat} \end{table}
[ [ "Metric", "sprintf", "[num2str(1) ‘ ’ a]", "1 + \" \" + a", "Advantage over sprintf" ], [ "Chars of M-code\nDuration (sec)", "22 chars\n0.00001375", "18 chars\n0.00001227", "11 chars\n0.000001693", "2x as compact\n8.1x faster" ] ]
0.380952
null
null
0
2202.06493v1
4
[ 71.5479965209961, 97.43701171875, 272.7099914550781, 158.9396769205729 ]
\begin{table}[htb] \centering \caption{Dataset for experiments} \small \begin{tabular}{l|rrr} \hline \hline \multicolumn{1}{l}{} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Fashion\\ MNIST\end{tabular}} & \multicolumn{1}{c}{CIFAR10} & \multicolumn{1}{c}{\begin{tabular}[c]{@{}c@{}}Caltech\\ Birds\end{tabular}} \\ \hline Domain & Clothing & Vehicle, Animal & Bird \\ Train data & 60,000 & 50,000 & \multirow{2}{*}{17821} \\ Test data & 10,000 & 10,000 & \\ Classes & 10 & 10 & 200 \\ Clients & 3 & 5 & 10 \\ Samples & 6,400 & 6,400 & 3,200 \\ \hline \hline \end{tabular} \label{tab:dataset} \end{table}
[ [ "Domain\nTrain data\nTest data\nClasses\nClients\nSamples", "Clothing Vehicle, Animal Bird\n60,000 50,000\n17821\n10,000 10,000\n10 10 200\n3 5 10\n6,400 6,400 3,200" ] ]
0.65625
null
null
0
2103.13655v1
8
[ 149.92300415039062, 157.3800048828125, 298.0450134277344, 219.5460205078125 ]
\begin{table}[h] \centering % \caption{Overview of the results on the test set after optimization of the Neural Network (NN) and the Structured Deep Kernel Network (SDKN): Cross-correlation (left) and Loss (right).} \renewcommand{\arraystretch}{1.4} \tiny \begin{tabular}{|ll|r|r|l|l|} \hline % \textbf{Cross-Correlation} & & GRU1 & GRU2 & GRU3 \\ \hline \hline Projection & ANN & 0.9989 & 0.8163 & 0.9989 \\ & SDKN & 0.9989 & 0.9989 & 0.9988 \\ \hline Top-Hat & ANN & 0.9992 & 0.9992 & 0.9992 \\ & SDKN & 0.9991 & 0.9992 & 0.9992 \\ \hline Fourier \qquad \qquad & ANN & 0.9992 & 0.9993 & 0.9993 \\ & SDKN & 0.9992 & 0.9993 & 0.9993 \\ \hline \end{tabular} \quad \begin{tabular}{|ll|r|r|l|l|} \hline % \textbf{MSE-Loss} & & GRU1 & GRU2 & GRU3 \\ \hline \hline Projection & ANN & 3.235e-01 & 4.996e+01 & 3.233e-01 \\ & SDKN & 3.253e-01 & 3.261e-01 & 3.368e-01 \\ \hline Top-Hat & ANN & 3.155e-02 & 2.917e-02 & 2.888e-02 \\ & SDKN & 3.222e-02 & 2.989e-02 & 2.893e-02 \\ \hline Fourier \qquad \qquad & ANN & 1.179e-02 & 9.737e-03 & 9.452e-03 \\ & SDKN & 1.177e-02 & 1.007e-02 & 9.587e-03 \\ \hline \end{tabular} \label{tab:results_marius_corr} \end{table}
[ [ "Cross-Correlation", "GRU1", "GRU2", "GRU3" ], [ "Projection ANN\nSDKN", "0.9989\n0.9989", "0.8163\n0.9989", "0.9989\n0.9988" ], [ "Top-Hat ANN\nSDKN", "0.9992\n0.9991", "0.9992\n0.9992", "0.9992\n0.9992" ], [ "Fourier ANN\nSDKN", "0.9992\n0.9992", "0.9993\n0.9993", "0.9993\n0.9993" ] ]
0.38472
null
null
0
1904.05961v3
8
[ 60.82500076293945, 86.8202880859375, 288.1610107421875, 156.49298095703125 ]
\begin{table}[tb] % \vspace{-.0em} %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Parameters of Datasets} \label{tab:dataset} %\vspace{-1em} \centering \begin{tabular}{r|c|c|c} \hline dataset & size ($|P|$) & dimension ($d$) & \#distinct labels ($L$) \\ \hline Fisher's iris & 150 & 5 & 3 \\ \hline Facebook & 500 & 19 & 4 \\ \hline Pendigits & 7494 & 17 & 10 \\ \hline MNIST & 70000 & 401 & 10 \\ \hline HAR & 10299 & 562 & 6 \\ \hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset\nFisher’s iris", "size (|P|)\n150", "dimension (d)\n5", "#distinct labels (L)\n3" ], [ "Facebook", "500", "19", "4" ], [ "Pendigits", "7494", "17", "10" ], [ "MNIST", "70000", "401", "10" ], [ "HAR", "10299", "562", "6" ] ]
0.848684
null
null
1
1904.05961v3
11
[ 54.45199966430664, 373.4720092773438, 289.3331778390067, 444.62112862723217 ]
\begin{table}[t] { %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\ \hline FP %farthest point & 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\ \hline NS %nonuniform samp. & 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\ \hline US %uniform samp. & 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\ \hline RS %RCC-kmeans & 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\ \hline RN %RCC-kmedian & 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "algorithm F", "isher", "Facebook", "Pendigits", "MNIST", "HAR" ], [ "FP", "1.62", "3.00", "2.53", "21.69 2", "5.92" ], [ "NS 0", ".019", "0.027", "0.095", "7.42", "0.69" ], [ "US 2.", "10e-04", "4.60e-04", "3.80e-04", "0.01 0", ".0013" ], [ "RS 0", ".0083", "0.011", "0.042", "18.76", "1.46" ], [ "RN 0", ".028", "0.30", "0.40", "100.64 1", "2.39" ] ]
0.712598
null
null
2
1904.05961v3
12
[ 119.85399627685547, 85.47900390625, 229.13198852539062, 121.64398193359375 ]
\begin{table}[t] {%\color{blue} %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) } \label{tab:time, distributed} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c} \hline algorithm & MNIST & HAR \\ \hline CDCC & 13.84 & 1.55 \\ \hline DRCC & 31.66 & 2.42 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "algorithm", "MNIST", "HAR" ], [ "CDCC", "13.84", "1.55" ], [ "DRCC", "31.66", "2.42" ] ]
0.953271
null
null
3
1904.05961v3
9
[ 78.60390784523703, 180.22633488972983, 157.61173659104568, 252.8696632385254 ]
\begin{table}[tb] % \vspace{-.0em} % \footnotesize % \renewcommand{\arraystretch}{1.3} % \caption{Average Running Time (sec) } \label{tab:time} % \vspace{-.5em} % \centering % \begin{tabular}{r|c|c|c|c} % \hline % algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\ % \hline % farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\ % \hline % nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\ % \hline % uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\ % \hline % RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\ % \hline % RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\ % \hline % \end{tabular} % \vspace{-1em} % \end{table}
[ [ "", "farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian" ], [ null, "" ] ]
0.480769
null
null
4
1904.05961v3
15
[ 71.8550033569336, 85.47900390625, 277.1319885253906, 157.8079833984375 ]
\begin{table}[tb] %\vspace{-.0em} \color{blue} \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Error bound $\epsilon$ for MEB ($z=1$)} \label{tab:epsilon, z=1} %\vspace{-.5em} \centering \begin{tabular}{r|c|c|c} \hline dataset & coreset size & max relative error & $\epsilon$ \\ \hline Fisher's iris & 5 (20) & 0.0041 & 0.4127 \\ \hline Facebook & 20 (80) & 0.0044 & 49.3484 \\ \hline Pendigits & 40 (400) & 0.0027 & 691.345 \\ \hline MNIST & 400 & 8.1756 & 189130 \\ \hline HARS & 400 & & \\ \hline %LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\ %\hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset", "coreset size", "max relative error", "ϵ" ], [ "Fisher’s iris", "20", "0.0053", "0.1073" ], [ "Facebook", "80", "0.0344", "1.18" ], [ "Pendigits", "400", "0.0026", "2.1112" ], [ "MNIST", "400", "0.0024", "10.74" ], [ "HAR", "400", "5.6054e-05", "3.9212" ] ]
0.674938
null
null
5
1904.05961v3
15
[ 71.8550033569336, 199.45510864257812, 277.1319885253906, 273.01202392578125 ]
\begin{table}[tb] %\vspace{-.0em} \color{blue} \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Error bound $\epsilon$ for MEB ($z=2$)} \label{tab:epsilon, z=2} %\vspace{-.5em} \centering \begin{tabular}{r|c|c|c} \hline dataset & coreset size & max relative error & $\epsilon$ \\ \hline Fisher's iris & 5 (20) & 0.0097 & 0.6424 \\ \hline Facebook & 20 (80) & 0.0345 & 7.0248 \\ \hline Pendigits & 40 (400) & 0.0023 & 26.2934 \\ \hline MNIST & 400 & 8.1726 & 434.8897 \\ \hline (new data) & & & \\ \hline %LR & $\dist(p_l, p_n^T x_{1:d-1} + x_d)^2$ & weighted sum \\ %\hline \end{tabular} %\vspace{-.5em} \end{table}
[ [ "dataset\nFisher’s iris", "coreset size\n20", "max relative error\n1.1896e-05", "ϵ\n0.1093" ], [ "Facebook", "80", "1.9976e-06", "1.3711" ], [ "Pendigits", "400", "4.3876e-05", "2.0257" ], [ "MNIST", "400", "0.0020", "8.53" ], [ "HAR", "400", "4.9972e-07", "3.5612" ] ]
0.49642
null
null
6
1904.05961v3
15
[ 310.60457938058033, 94.44598388671875, 567.0517142159598, 154.719970703125 ]
\begin{table}[t] { %\small \footnotesize %\color{blue} \renewcommand{\arraystretch}{1.3} \caption{Original Machine Learning Performance (cost for MEB, $k$-means, PCA; accuracy for SVM and NN)} \label{tab:original cost} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline problem & Fisher's & Facebook & Pendigits & MNIST & HAR\\ \hline MEB & 2.05 & 7.65 & 18.06 & 90.43 & 60.26 \\ \hline $k$-means & 84.54 & 853.67 & 2.00e+05 & 4.98e+07 & 2.86e+06 \\ \hline PCA & 1.94 & 197.19 & 910.79 & 1.73e+04 & 4.46e+05 \\ \hline SVM/NN\footnotemark & 100\% & 89.36\% & 99.33\% & 87.01\% & 78.01\% \\ %\hline %NN & & & & & \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "problem", "Fisher’s", "Facebook", "Pendigits", "MNIST", "HAR" ], [ "MEB", "2.05", "7.65", "18.06", "90.43", "60.26" ], [ "k-means", "84.54", "853.67", "2.00e+05", "4.98e+07", "2.86e+06" ], [ "PCA", "1.94", "197.19", "910.79", "1.73e+04", "4.46e+05" ], [ "SVM/NN4", "100%", "89.36%", "99.33%", "87.01%", "78.01%" ] ]
0.803738
null
null
7
1904.05961v3
8
[ 465.7950966971261, 163.474755859375, 542.6723248517072, 243.49267578125 ]
\begin{table}[t] { %\small \footnotesize \renewcommand{\arraystretch}{1.3} \caption{Average Running Time (sec) (`FP': farthest point, `NS': nonuniform sampling, `US': uniform sampling, `RS': RCC-kmeans, `RN': RCC-kmedian) } \label{tab:time} %\vspace{-1em} \centerline{ \begin{tabular}{r|c|c|c|c|c} \hline algorithm & Fisher & Facebook & Pendigits & MNIST & HAR \\ \hline FP %farthest point & 1.62 & 3.00 & 2.53 & 21.69 & 25.92 \\ \hline NS %nonuniform samp. & 0.019 & 0.027 & 0.095 & 7.42 & 0.69 \\ \hline US %uniform samp. & 2.10e-04 & 4.60e-04 & 3.80e-04 & 0.01 & 0.0013 \\ \hline RS %RCC-kmeans & 0.0083 & 0.011 & 0.042 & 18.76 & 1.46 \\ \hline RN %RCC-kmedian & 0.028 & 0.30 & 0.40 & 100.64 & 12.39 \\ \hline \end{tabular} } } \vspace{.5em} \end{table}
[ [ "farthest point\nnonuniform sampling\nuniform sampling", null ], [ "RCC-kmeans\nRCC-kmedian", "" ] ]
0.371585
null
null
8
1904.05961v3
9
[ 203.78987312316895, 285.95184326171875, 279.5675640106201, 359.3156337738037 ]
\begin{table}[tb] % \vspace{-.0em} % \footnotesize % \renewcommand{\arraystretch}{1.3} % \caption{Average Running Time (sec) } \label{tab:time} % \vspace{-.5em} % \centering % \begin{tabular}{r|c|c|c|c} % \hline % algorithm & Fisher's iris & Facebook & Pendigits & MNIST \\ % \hline % farthest point & $0.02$ & $0.04$ & $0.06$ & $7.27$\\ % \hline % nonuniform sampling & $0.06$ & $0.03$ & $0.19$ & $4.34$ \\ % \hline % uniform sampling & $0.001$ & $0.001$ & $0.003$ & $0.01$ \\ % \hline % RCC-kmeans & $0.04$ & $0.02$ & $0.13$ & $13.59$ \\ % \hline % RCC-kmedian & $0.05$ & $0.48$ & $1.28$ & $123.82$ \\ % \hline % \end{tabular} % \vspace{-1em} % \end{table}
[ [ "farthest point\nnonuniform samplin\nuniform sampling\nRCC-kmeans\nRCC-kmedian", null, null ], [ null, "RCC-\nRCC-", "kmeans\nkmedian" ] ]
0.466859
null
null
0
2301.01542v1
31
[ 206.56300354003906, 117.44898986816406, 403.19598388671875, 169.3759765625 ]
\begin{table}[t] \caption{Average test accuracy across clients for different datasets in the settings when $N_{\text{hist}} /N = 50\%$.} \label{tab:ratio_estimation_exp} % \vskip 0.15in \begin{center} \begin{small} \begin{sc} \begin{tabular}{ l | c c c c } \toprule \textbf{Dataset} & $D$ & $G$ & $B$ & $d$ \\ \midrule Synthetic & $1.9$ & $0.4$ & $0.7$ & $21$ \\ CIFAR-10 & $1.0$ & $5.5$ & $2.3$ & $3,353,034$ \\ CIFAR-100 & $1.0$ & $4.7$ & $4.6$ & $3,537,444$ \\ FEMNIST & $5.9$ & $12.9$ & $3.5$ & $867,390$ \\ Shakespeare & $2.6$ & $1.4$ & $6.1$ & $226,180$ \\ \bottomrule \end{tabular} \end{sc} \end{small} \end{center} % \vskip -0.1in \end{table}
[ [ "SYNTHETIC\nCIFAR-10\nCIFAR-100\nFEMNIST\nSHAKESPEARE", "1.9 0.4 0.7 21\n1.0 5.5 2.3 3, 353, 034\n1.0 4.7 4.6 3, 537, 444\n5.9 12.9 3.5 867, 390\n2.6 1.4 6.1 226, 180" ] ]
0.397032
null
null
0
1908.04909v1
1
[ 321.5539855957031, 536.426025390625, 553.4600219726562, 564.52099609375 ]
\begin{table}[h] \begin{center} \begin{tabular}{|l|r|r|r|r|r|r|r|}\hline & TP & FP & FN & TN & ACC & MCC & FPR \\\hline \textbf{model A} & 900 & 500 & 100 & 8500 & 94.0\% & 0.73 & 5.6\% \\\hline \textbf{model B} & 350 & 100 & 650 & 8900 & 92.5\% & 0.49 & 1.1\% \\\hline \end{tabular} \end{center} \caption[Two candidate models]% {Performance of models A and B. TP is true positives; FP is false positives; FN is false negatives; TN is true negatives; ACC is accuracy; FPR is false positive rate. Compared to model B, model A has better MCC, but worse FPR.} \label{ex_data_tab} %\vspace{-20pt} \end{table}
[ [ "", "TP", "FP", "FN", "TN", "ACC", "MCC", "FPR" ], [ "model A", "900", "500", "100", "8500", "94.0%", "0.73", "5.6%" ], [ "model B", "350", "100", "650", "8900", "92.5%", "0.49", "1.1%" ] ]
0.422594
null
null
1
1908.04909v1
8
[ 92.98300170898438, 47.15399169921875, 256.00299072265625, 75.2490234375 ]
\begin{table}[h] \begin{center} \begin{tabular}{ | c |c | c | } \hline \textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline \textbf{False} & 146,956 & 5,562 \\ \hline \textbf{True} & 22,963 & 10,721 \\ \hline \end{tabular} \end{center} \caption{Confusion Matrix - Validation Data - Default Model} \label{donors_tab2} % \vspace{-20pt} \end{table}
[ [ "Target", "Predicted False", "Predicted True" ], [ "False", "147,417", "5,101" ], [ "True", "13,650", "20,034" ] ]
0.545455
null
null
2
1908.04909v1
9
[ 92.98300170898438, 270.469970703125, 256.00299072265625, 298.5639953613281 ]
\begin{table}[h] \begin{center} \begin{tabular}{ | c | c | c | } \hline \textbf{Target} & \textbf{Predicted False} & \textbf{Predicted True} \\ \hline \textbf{False} & 147,417 & 5,101\\ \hline \textbf{True} & 13,650 & 20,034 \\ \hline \end{tabular} \end{center} \caption{Confusion Matrix - Validation Data - "Best" Model} \label{donors_tab3} % \vspace{-20pt} \end{table}
[ [ "Target", "Predicted False", "Predicted True" ], [ "False", "276,482", "1,429" ], [ "True", "4,535", "6,371" ] ]
0.516129
null
null
0
2304.14853v1
4
[ 73.21099853515625, 611.2139892578125, 276.7539173473011, 667.4030151367188 ]
\begin{table}[H] \centering \caption{$p$-values for Sleep States using TDA} \begin{tabular}{| c | c | c | c | c |} \hline \textbf{EEG Band} & NREM1 & NREM2 & NREM3 & REM \\ \hline Delta Band & 0.000 & 0.001 & 0.000 & 0.040 \\ \hline Theta Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Alpha Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Beta Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline Gamma Band & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline \end{tabular} \label{tab:sleep_state_p_value_pl} \end{table}
[ [ "EEG Band", "NREM1", "NREM2", "NREM3", "REM" ], [ "Delta Band", "0.000", "0.001", "0.000", "0.040" ], [ "Theta Band", "0.000", "0.000", "0.000", "0.000" ], [ "Alpha Band", "0.000", "0.000", "0.000", "0.000" ], [ "Beta Band", "0.000", "0.000", "0.000", "0.000" ], [ "Gamma Band", "0.000", "0.000", "0.000", "0.000" ] ]
0.946636
null
null
0
2405.17731v1
5
[ 63.372429438999724, 117.75799560546875, 284.47127859933033, 185.90301513671875 ]
\begin{table}[htbp] \centering \caption{Data Loading times for all databases across the five datasets (time in seconds)} \label{tab:loadtime} \begin{tabular}{|c|c|c|c|c|c|} \hline Databases & SF1 & SF2 & SF3 & SF4 & SF5 \\ \hline PostgreSQL & 37s & 375s & 857s & 1089s & 1481s\\ \hline MongoDB & 90s & 1250s & 1701s & 2275s & 2810s \\ \hline ArangoDB & 295s & 2249s & 3964s & 12169s & 15162s \\ \hline Redis & 1495s & 3245s & 5023s & 7748s & 10289s\\ \hline Apache Kudu & 42s & 95s & 146s & 192s & 240s\\ \hline \end{tabular} \end{table}
[ [ "Databases", "SF1", "SF2", "SF3", "SF4", "SF5" ], [ "PostgreSQL", "37s", "375s", "857s", "1089s", "1481s" ], [ "MongoDB", "90s", "1250s", "1701s", "2275s", "2810s" ], [ "ArangoDB", "295s", "2249s", "3964s", "12169s", "15162s" ], [ "Redis", "1495s", "3245s", "5023s", "7748s", "10289s" ], [ "Apache Kudu", "42s", "95s", "146s", "192s", "240s" ] ]
1
null
null
0
1903.09493v1
5
[ 264.3240051269531, 116.03497314453125, 351.0320129394531, 269.85797119140625 ]
\begin{table}[ht] \centering \begin{tabular}{c|c} \hline \textbf{Reference} & \textbf{Paper} \\ & \textbf{number} \\ \cline{1-2} \cite{Dwork:12} & [1] \\ \cite{Kleinberg:16} & [2] \\ \cite{Berk:17} & [3] \\ \cite{Hardt:16} & [4] \\ \cite{Corbett:17} & [5] \\ \cite{Simoiu:17} & [6] \\ \cite{Chouldechova:16} & [7] \\ \cite{Zafar:17} & [8] \\ \cite{Kusner:18} & [9] \\ \cite{Dieterich:16} & [10] \\ \cite{Zafar2:17} & [11] \\ \cite{Binns:18} & [12] \\ \hline \end{tabular} \caption{References} \label{Table:2} \end{table}
[ [ "Reference", "Paper\nnumber" ], [ "[12]\n[18]\n[2]\n[15]\n[9]\n[24]\n[7]\n[28]\n[19]\n[10]\n[27]\n[4]", "[1]\n[2]\n[3]\n[4]\n[5]\n[6]\n[7]\n[8]\n[9]\n[10]\n[11]\n[12]" ] ]
0.409091
null
null
0
2309.04210v1
5
[ 315.2139892578125, 459.90899658203125, 555.9860229492188, 498.0660095214844 ]
\begin{table} \renewcommand{\arraystretch}{1.3} \caption{Comparison of all three observers, showing the mean and standard deviation of the rms voltage error $\obserrrms$ (in $mV$) across twenty trials.} \label{table:results_full} \centering \begin{tabular}{|c|c|c|c|c|} \hline & Centralized & Distributed & $\numredundant=3$ & $\numredundant=9$\\ \hline\hline Mean & 1.15 & 0.0788 & 0.0280 & 0.0241 \\ \hline Standard Deviation & 0.14 & 0.017 & 0.0056 & 0.0030 \\ \hline \end{tabular} \end{table}
[ [ "", "Centralized", "Distributed", "N = 3", "N = 9" ], [ "Mean", "1.15", "0.0788", "0.0280", "0.0241" ], [ "Standard Deviation", "0.14", "0.017", "0.0056", "0.0030" ] ]
0.87395
null
null
0
1604.02608v1
6
[ 211.61500549316406, 154.77801513671875, 399.63299560546875, 216.5469970703125 ]
\begin{table}[!ht] \caption{Data intensive users supported by the OSDC} \begin{center} \begin{tabular}{|l | r|} \hline \# core hours during month & \# of users \\ \hline % 10,000 & 435 \\ \hline 20,000 & 120 \\ \hline 50,000 & 34 \\ \hline 100,000 & 23 \\ \hline 200,000 & 5 \\ \hline \end{tabular} \end{center} \label{tab:users} \footnotesize{The estimated cost of 100,000 core hours on a commercial cloud service provider like AWS is \$40,000 per month.} \end{table}
[ [ "# core hours during month", "# of users" ], [ "20,000", "120" ], [ "50,000", "34" ], [ "100,000", "23" ], [ "200,000", "5" ] ]
0.543554
null
null
0
2101.04025v2
6
[ 53.79800033569336, 128.71697998046875, 306.6470031738281, 202.739990234375 ]
\begin{table}[h] \renewcommand{\arraystretch}{1.3} \caption{Serverless Fit Times and Costs with 1024 MB Memory and Per-Sample-Split Scaling (Mean, Min \& Max in 100 Runs).} \label{table_timing_example} \centering \begin{tabular}{l || c | c | c} \hline & \bfseries Mean & \bfseries Min & \bfseries Max \\ \hline\hline \bfseries Fit Time (s) & 19.82 & 19.53 & 21.49 \\ \bfseries Billed Duration (GB-s) & 3515.36 & 3492.01 & 3571.42 \\ \bfseries Avg.\ Duration per Invocation (s) & 17.16 & 17.05 & 17.44 \\ \bfseries Total Response Time (s) & 19.09 & 18.81 & 20.76 \\ \hline \end{tabular} \end{table}
[ [ "", "Mean", "Min", "Max" ], [ "Fit Time (s)\nBilled Duration (GB-s)\nAvg. Duration per Invocation (s)\nTotal Response Time (s)", "19.82\n3515.36\n17.16\n19.09", "19.53\n3492.01\n17.05\n18.81", "21.49\n3571.42\n17.44\n20.76" ] ]
0.573427
null
null
0
2005.03197v4
5
[ 68.84456565163352, 320.3421630859375, 282.4513327858665, 400.2100524902344 ]
\begin{table}[htb!] %\fontsize{7}{7}\selectfont \caption{(MFC Results) Vanilla HAC and FHAC (Ours)}\label{table1} \begin{center} \tabcolsep=0.10cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|c|c|c|c|}% \hline \textbf{Dataset} & \textbf{Linkage} & \textbf{$\theta_1$} & \textbf{$\theta_2$} & \textbf{MFC (Vanilla)} & \textbf{MFC (FHAC)}\\ \hline \hline \texttt{census} & Average & 0.001 & 0.001 & \textbf{0.0853} & \textbf{ 0.0853}\\ \hline \texttt{census} & Complete & 0.001 & 0.001 & 0.1806 & \textbf{0.0853}\\ \hline \texttt{census} & Single & 0.001 & 0.65 & 1.248 & \textbf{0.752}\\ \hline \texttt{creditcard} & Average & 0.00005 & 0.005 & 1.2439 & \textbf{1.0}\\ \hline \texttt{creditcard} & Complete & 0.00005 & 0.005 & 0.744 & \textbf{0.60}\\ \hline \texttt{creditcard} & Single & 0.0075 & 0.5 & 1.5 & \textbf{ 0.778}\\ \hline \texttt{bank} & Average & 0.0001 & 0.05 & 1.332 & \textbf{0.6679}\\ \hline \texttt{bank} & Complete & 0.5 & 0.05 & 1.332 & \textbf{0.4457}\\ \hline \texttt{bank} & Single & 0.001 & 0.65 & 1.332 & \textbf{0.6653}\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Linkage", "θ1", "θ2", "MFC (Vanilla)", "MFC (FHAC)" ], [ "census", "Average", "0.001", "0.001", "0.0853", "0.0853" ], [ "census", "Complete", "0.001", "0.001", "0.1806", "0.0853" ], [ "census", "Single", "0.001", "0.65", "1.248", "0.752" ], [ "creditcard", "Average", "0.00005", "0.005", "1.2439", "1.0" ], [ "creditcard", "Complete", "0.00005", "0.005", "0.744", "0.60" ], [ "creditcard", "Single", "0.0075", "0.5", "1.5", "0.778" ], [ "bank", "Average", "0.0001", "0.05", "1.332", "0.6679" ], [ "bank", "Complete", "0.5", "0.05", "1.332", "0.4457" ], [ "bank", "Single", "0.001", "0.65", "1.332", "0.6653" ] ]
0.980392
null
null
1
2005.03197v4
5
[ 68.84456565163352, 436.6025695800781, 282.4513327858665, 515.1467895507812 ]
\begin{table}[htb!] \caption{(Balance Results) Vanilla HAC and FHAC (Ours)}\label{table2} \begin{center} \tabcolsep=0.09cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|c|c|} \hline \textbf{Dataset} & \textbf{Linkage} & $\theta_1$ & $\theta_2$ & \textbf{Balance(Vanilla)} & \textbf{Balance(FHAC)}\\ \hline \hline \texttt{census} & Average & 0.001 & 0.001 & \textbf{0.8865} & \textbf{0.8865}\\ \hline \texttt{census} & Complete & 0.001 & 0.001 & 0.7599 & \textbf{0.8865}\\ \hline \texttt{census} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.9385}\\ \hline \texttt{creditcard} & Average & 0.05 & 0.1 & 0.0 & \textbf{0.427}\\ \hline \texttt{creditcard} & Complete & 0.0005 & 1.0 & 0.0 & \textbf{0.7105}\\ \hline \texttt{creditcard} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.7959}\\ \hline \texttt{bank} & Average & 0.045 & 0.09 & 0.0 & \textbf{0.5567}\\ \hline \texttt{bank} & Complete & 0.5 & 0.05 & 0.0 & \textbf{0.3327}\\ \hline \texttt{bank} & Single & 0.0005 & 1.0 & 0.0 & \textbf{0.8099}\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Linkage", "θ1", "θ2", "Balance(Vanilla)", "Balance(FHAC)" ], [ "census", "Average", "0.001", "0.001", "0.8865", "0.8865" ], [ "census", "Complete", "0.001", "0.001", "0.7599", "0.8865" ], [ "census", "Single", "0.0005", "1.0", "0.0", "0.9385" ], [ "creditcard", "Average", "0.05", "0.1", "0.0", "0.427" ], [ "creditcard", "Complete", "0.0005", "1.0", "0.0", "0.7105" ], [ "creditcard", "Single", "0.0005", "1.0", "0.0", "0.7959" ], [ "bank", "Average", "0.045", "0.09", "0.0", "0.5567" ], [ "bank", "Complete", "0.5", "0.05", "0.0", "0.3327" ], [ "bank", "Single", "0.0005", "1.0", "0.0", "0.8099" ] ]
0.979899
null
null
2
2005.03197v4
5
[ 331.9150848388672, 178.67807006835938, 545.4621948242187, 213.11260986328125 ]
\begin{table}[htbp] \caption{(MFC Results) FHAC, AFHAC-R, and AFHAC-V}\label{table3} \begin{center} %\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|} \tabcolsep=0.10cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|} \hline \textbf{Dataset} & \textbf{MFC (FHAC)} & \textbf{MFC (AFHAC-V)} & \textbf{MFC (AFHAC-R)}\\ \hline \hline \texttt{creditcard} & \textbf{1.0} & 2.8505 & 1.5825 \\ \hline \texttt{census} & \textbf{0.0853} & 4.0 & 4.0 \\ \hline \texttt{bank} & 0.6679 & \textbf{0.03648} & 2.0027\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "MFC (FHAC)", "MFC (AFHAC-V)", "MFC (AFHAC-R)" ], [ "creditcard", "1.0", "2.8505", "1.5825" ], [ "census", "0.0853", "4.0", "4.0" ], [ "bank", "0.6679", "0.03648", "2.0027" ] ]
1
null
null
3
2005.03197v4
5
[ 331.9150848388672, 407.85089111328125, 545.4621948242187, 440.2733459472656 ]
\begin{table}[htbp] \caption{(Balance Results) FHAC, AFHAC-R, AFHAC-V}\label{table4} \begin{center} %\begin{tabularx}{0.642\linewidth}{|p{2.6cm}|p{1.6cm}|p{2cm}|p{1cm}|p{1.6cm}|} \tabcolsep=0.09cm \resizebox{0.42\textwidth}{!}{ \begin{tabular}{|c|c|c|c|} \hline \textbf{Dataset} & \textbf{Balance(FHAC)} & \textbf{Balance(AFHAC-V)} & \textbf{Balance(AFHAC-R)}\\ \hline \hline \texttt{creditcard} & \textbf{0.427} & 0.0 & 0.416 \\ \hline \texttt{census} & \textbf{0.8865} & 0.2 & 0.0 \\ \hline \texttt{bank} & 0.5567 & \textbf{0.9474} & 0.0\\ \hline \end{tabular}} \end{center} \end{table}
[ [ "Dataset", "Balance(FHAC)", "Balance(AFHAC-V)", "Balance(AFHAC-R)" ], [ "creditcard", "0.427", "0.0", "0.416" ], [ "census", "0.8865", "0.2", "0.0" ], [ "bank", "0.5567", "0.9474", "0.0" ] ]
1
null
null
0
2110.07519v1
21
[ 36.68600082397461, 208.1970418294271, 279.2229919433594, 248.8449910481771 ]
\begin{table}[tb] \centering \caption{Index expansion rate (index size as a percentage of the original data size).}\label{table5} \hspace*{-0.3cm} \begin{tabular}{|c|c|c|c|} \hline &Synthetic&Seismic&SALD\\ & {100GB} & {100GB} & {100GB} \\ & {100M series} & {100M series} & {200M series} \\ \hline index expansion rate&5.7\%& 5.1\%& 10.5\%\\ \hline \end{tabular} \end{table}
[ [ "", "Synthetic\n100GB\n100M series", "Seismic\n100GB\n100M series", "SALD\n100GB\n200M series" ], [ "index expansion rate", "5.7%", "5.1%", "10.5%" ] ]
0.762332
null
null
1
2110.07519v1
21
[ 131.4929962158203, 107.9210205078125, 439.4949951171875, 159.72698974609375 ]
\begin{table}[tb] % \centering % \scriptsize % \caption{Query answering algorithms comparison: number of times an operation is executed (average over 100 queries). }\label{table4} % \begin{tabular}{|c|c|c|c|c|c|} % \hline % & {\bf ParIS} & {\bf ParIS-TS} & {\bf ParIS-TS-LB} & {\bf MESSI-sq} & {\bf MESSI-mq} \\ % \hline % Insert node &n/a&69K& 69K& 15K& 15K\\ % \hline % Delete node&n/a&20K &20K& 11K& 11K\\ % \hline % LBD calculation &100M& 69K &9M& 9M &9M\\ % \hline % RD calculation &112K &9M &52K &54K &54K\\ % \hline % \end{tabular} %\end{table}
[ [ "", "ParIS+", "ParIS+TS", "ParIS+TS-LB", "MESSI-sq", "MESSI-mq" ], [ "PQ ins. node", "n/a", "69,117", "69,134", "14,620", "14,611" ], [ "PQ del. node", "n/a", "20,051", "20,111", "11,152", "10,747" ], [ "LBD calcul.", "100 M", "69,117", "9,173,401", "9,175,400", "9,170,162" ], [ "RD calcul.", "112,321", "9,183,312", "52,139", "54,207", "53,919" ] ]
0.444444
null
null
2
2110.07519v1
21
[ 308.25, 198.322021484375, 519.970100402832, 269.62767537434894 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (Euclidean distance).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&11.97&20.92&45.58&258.04\\ updates/query&11.9&20.9&45.6&258.1\\ \hline BSF update time& & & &\\ %$\mu$sec/query&0.51&5.07&19.12&186.47\\ $\mu$sec/query&0.5&5.1&19.1&186.5\\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \% &0.001\% & 0.01\% & 0.04\% & 0.3\% \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{table2} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "11.9", "20.9", "45.6", "258.1" ], [ "BSF update time\nµsec/query", "0.5", "5.1", "19.1", "186.5" ], [ "BSF update time\nquery time %", "0.001%", "0.01%", "0.04%", "0.3%" ] ]
0.617424
null
null
3
2110.07519v1
23
[ 51.75600051879883, 286.10198974609375, 265.49737548828125, 357.4350280761719 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 5\% warping).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&22.71& 83.94& 160.2& 672.35\\ updates/query&22.7& 83.9& 160.2& 672.4\\ \hline BSF update time& & & &\\ %$\mu$sec/query&4.92&19.95& 50.21&473.27 $\mu$sec/query&4.9&19.9& 50.2&473.3 \\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \textperthousand % &0.0072\textperthousand % &0.027\textperthousand % &0.062\textperthousand % &0.54\textperthousand &0.007\textperthousand &0.03\textperthousand &0.06\textperthousand &0.5\textperthousand \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{tabledtw5} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "22.7", "83.9", "160.2", "672.4" ], [ "BSF update time\nµsec/query", "4.9", "19.9", "50.2", "473.3" ], [ "BSF update time\nquery time ‰", "0.007‰", "0.03‰", "0.06‰", "0.5‰" ] ]
0.471264
null
null
4
2110.07519v1
23
[ 47.63600158691406, 401.4490051269531, 270.5639885796441, 472.7820129394531 ]
\begin{table}[tb] \centering \makeatletter\def\@captype{table}\makeatother \caption{Update Frequency of the BSF array (DTW distance, 10\% warping).} { \begin{tabular}{|c|c|c|c|c|} \hline %Number of nearest neighbors & {\bf 1-NN} & {\bf 5-NN} & {\bf 10-NN} & {\bf 50-NN}\\ \hline number of BSF& & & & \\ %updates/query&45.83& 124.73& 221.36& 854.04\\ updates/query&45.8& 124.7& 221.4& 854.1\\ \hline BSF update time& & & &\\ %$\mu$sec/query&11.91 &31.46&72.51&574.22 $\mu$sec/query&11.9 &31.5&72.5&574.2 \\ \hline % BSF update time\\ query time \% &0.001\% & 0.011\% & 0.038\% & 0.331\% BSF update time& & & &\\ query time \textperthousand % &0.0031\textperthousand& % 0.0076\textperthousand& % 0.0016\textperthousand& % 0.12\textperthousand &0.003\textperthousand& 0.008\textperthousand& 0.002\textperthousand& 0.1\textperthousand \\ \hline \end{tabular} } % font size \vspace*{0.1cm} \label{tabledtw10} \end{table}
[ [ "", "1-NN", "5-NN", "10-NN", "50-NN" ], [ "number of BSF\nupdates/query", "45.8", "124.7", "221.4", "854.1" ], [ "BSF update time\nµsec/query", "11.9", "31.5", "72.5", "574.2" ], [ "BSF update time\nquery time ‰", "0.003‰", "0.008‰", "0.002‰", "0.1‰" ] ]
0.476056
null
null
0
1811.01315v2
4
[ 163.9600067138672, 133.2239990234375, 427.41400146484375, 385.5770263671875 ]
\begin{table}[!h] \centering \caption{List of Abbreviations and Acronyms.} \begin{tabular}{c|c} \hline MNL & Multinomial logit \\ \hline NB & Naive Bayes \\ \hline CART & Classification and regression trees \\ \hline RF & Random forest \\\hline BOOST & Boosting trees \\\hline BAG & Bagging trees \\\hline SVM & Support vector machines \\\hline NN & Neural networks \\\hline AIC & Akaike information criterion \\\hline BIC & Bayesian information criterion \\\hline Min & Minimum \\\hline Max & Maximum \\\hline SD & Standard deviation \\\hline SP & Stated-preference \\\hline RP & Revealed-preference \\\hline IIA & Independence of irrelevant alternatives \\ \hline PT & Public transit \\ \hline \end{tabular} \label{tab:acy} \end{table}
[ [ "MNL", "Multinomial logit" ], [ "NB", "Naive Bayes" ], [ "CART", "Classification and regression trees" ], [ "RF", "Random forest" ], [ "BOOST", "Boosting trees" ], [ "BAG", "Bagging trees" ], [ "SVM", "Support vector machines" ], [ "NN", "Neural networks" ], [ "AIC", "Akaike information criterion" ], [ "BIC", "Bayesian information criterion" ], [ "Min", "Minimum" ], [ "Max", "Maximum" ], [ "SD", "Standard deviation" ], [ "SP", "Stated-preference" ], [ "RP", "Revealed-preference" ], [ "IIA", "Independence of irrelevant alternatives" ], [ "PT", "Public transit" ] ]
0.990099
null
null
1
1811.01315v2
6
[ 65.09200286865234, 133.2239990234375, 526.8619995117188, 547.7470092773438 ]
\begin{table}[!t] \centering \caption{List of Symbols and Notations Used in the Paper} \footnotesize \begin{tabular}{c|c} \hline \bf{} Symbols & \bf{} Description \\ \hline $K$ & Total number of alternatives \\ \hline $N$ & Total number of observations \\ \hline $P$ & Total number of features\\ \hline $\boldsymbol{X}$ & Input data for logit models containing $P$ features with $N$ observations for $K$ alternatives \\ \hline $\boldsymbol X_{k,p}$ & Feature $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\ \hline $\boldsymbol{X}_{k,-p}$ & All the features except $p$ for alternative $k, k = 1, ..., K$ of $\boldsymbol X$\\ \hline $\boldsymbol{X}_{ik}$ & A row-vector for the $i$th observation for alternative $k, k = 1, ..., K$ \\ \hline $\boldsymbol{X}_k$ & Input data for alternative $k$, $\boldsymbol{X}_k = [\boldsymbol{X}_{.k1}; ...; \boldsymbol{X}_{.kP}]$ where $\boldsymbol{X}_{.kp} = [X_{1kp}, ..., X_{Nkp}]$\\ \hline $\boldsymbol{X}_i$ & The $i$th observation of $\boldsymbol{X}$, $\boldsymbol{X}_i = [\boldsymbol{X}_{i.1}, ..., \boldsymbol{X}_{i.P}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$ \\ \hline $\boldsymbol{X}_p$ & The feature $p$ of $\boldsymbol{X}$, $\boldsymbol{X}_p = [\boldsymbol{X}_{1.p}, ..., \boldsymbol{X}_{N.p}]$ where $\boldsymbol{X}_{i.p} = [X_{i1p}; ...; X_{iKp}]$\\ \hline $\boldsymbol{Z}$ & Input data for machine-learning models containing $P$ features and $N$ observations\\ \hline $\boldsymbol Z_{p}$ & Feature $p$ of $\boldsymbol{Z}$\\ \hline $\boldsymbol Z_{-p}$ & All the features except $p$ of $\boldsymbol{Z}$\\ \hline $\boldsymbol{Z}_i$ & $i$th observation of $\boldsymbol{Z}, \boldsymbol{Z}_i = [Z_{i1}, ..., Z_{iP}$]\\ \hline $U_k(\boldsymbol{X}_k|\boldsymbol{\beta}_k)$ & Utility function for mode $k$ \\ \hline $\boldsymbol{\beta}_k$ & Parameter vector for alternative $k$ of MNL model\\ \hline $\boldsymbol{\beta}$ & Parameter matrix of MNL model, $\boldsymbol{\beta} = [\boldsymbol{\beta}_1,..., \boldsymbol{\beta}_K]$ \\ \hline $\hat{\boldsymbol{\beta}}$ & Estimated parameter matrix of MNL model \\ \hline $\boldsymbol{\varepsilon}_{k}$ & Random error for alternative $k$ of MNL model \\ \hline $\boldsymbol{Y}$ & Output mode choice data \\ \hline $\hat{Y}_i$ & Estimated mode choice for observation $i$ \\ \hline $\boldsymbol{\theta}$ & Parameter or hyperparameter vector for machine-learning models\\ \hline $\hat{\boldsymbol{\theta}}$ & Estimated parameter or hyperparameter vector\\ \hline $f(\boldsymbol{Z}|\boldsymbol{\theta})$ & Machine-learning models based on $\boldsymbol{Z}$ and $\boldsymbol{\theta}$ \\ \hline $p_{ik}$ & Probability of choosing alternative $k$ of observation $i$ \\ \hline $\hat{p}_{ik}$ & Predicted probability for choosing alternative $k$ of observation $i$\\ \hline $I_k(\hat{Y}_i)$ & Indicator function that equals to 1 if $\hat{Y}_i = k$ \\ \hline $P_k(\boldsymbol{X}|\hat{ \boldsymbol{\beta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{X}$ and $\hat{ \boldsymbol{\beta}}$ for logit models\\ \hline $Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}})$ & Aggregate level prediction for mode $k$ based on $\boldsymbol{Z}$ and $\hat{ \boldsymbol{\theta}}$ for machine-learning models\\ \hline $E_k(\cdot)$ & Arc elasticity for alternative $k$\\ \hline $M_k(\cdot)$ & Marginal effect for alternative $k$\\ \hline $\Delta$ & Constant\\ \hline \end{tabular} \label{tab:symbol_des} \end{table}
[ [ "Symbols", "Description" ], [ "K", "Total number of alternatives" ], [ "N", "Total number of observations" ], [ "P", "Total number of features" ], [ "X", "Input data for logit models containing P features with N observations for K alternatives" ], [ "X\nk,p", "Feature p for alternative k, k = 1, ..., K of X" ], [ "X\nk,−p", "All the features except p for alternative k, k = 1, ..., K of X" ], [ "X\nik", "A row-vector for the ith observation for alternative k, k = 1, ..., K" ], [ "X\nk", "Input data for alternative k, X = [X .k1; ...; X ] where X = [X 1kp, ..., X Nkp]\nk .kP .kp" ], [ "X\ni", "The ith observation of X, X = [X i.1, ..., X ] where X = [X i1p; ...; X iKp]\ni i.P i.p" ], [ "X\np", "The feature p of X, X = [X 1.p, ..., X N.p] where X = [X i1p; ...; X iKp]\np i.p" ], [ "Z", "Input data for machine-learning models containing P features and N observations" ], [ "Z\np", "Feature p of Z" ], [ "Z\n−p", "All the features except p of Z" ], [ "Z\ni", "ith observation of Z, Z = [Z i1, ..., Z ]\ni iP" ], [ "U (X β )\nk k| k", "Utility function for mode k" ], [ "β\nk", "Parameter vector for alternative k of MNL model" ], [ "β", "Parameter matrix of MNL model, β = [β , ..., β ]\n1 K" ], [ "βˆ", "Estimated parameter matrix of MNL model" ], [ "ε\nk", "Random error for alternative k of MNL model" ], [ "Y", "Output mode choice data" ], [ "Yˆ\ni", "Estimated mode choice for observation i" ], [ "θ", "Parameter or hyperparameter vector for machine-learning models" ], [ "θˆ", "Estimated parameter or hyperparameter vector" ], [ "f(Z θ)\n|", "Machine-learning models based on Z and θ" ], [ "p\nik", "Probability of choosing alternative k of observation i" ], [ "pˆ\nik", "Predicted probability for choosing alternative k of observation i" ], [ "I ( Yˆ)\nk i", "Indicator function that equals to 1 if Yˆ = k\ni" ], [ "P (X βˆ)\nk |", "Aggregate level prediction for mode k based on X and βˆ for logit models" ], [ "Q (Z θˆ)\nk |", "Aggregate level prediction for mode k based on Z and θˆ for machine-learning models" ], [ "E ()\nk ·", "Arc elasticity for alternative k" ], [ "M ()\nk ·", "Marginal effect for alternative k" ], [ "∆", "Constant" ] ]
0.590507
null
null
2
1811.01315v2
7
[ 64.51399993896484, 276.370849609375, 528.147216796875, 586.4410400390625 ]
\begin{table}[!] \caption{Comparison Between Logit and Machine-Learning Models} \footnotesize \resizebox{1\textwidth}{!}{% <------ Don't forget this % \begin{tabular}{p{3.2cm}|p{8.8cm}|p{7.5cm}} \hline \textbf{} & \textbf{Logit Models} & \textbf{Machine-Learning Models} \Tstrut\Bstrut \\ \hline \multirow{3}{*}{\textbf{Model formulation}} & $U_{k}(\boldsymbol{X}_k|\boldsymbol{\beta}_k) = \boldsymbol{\beta}_k^T \boldsymbol{X}_{k} + \boldsymbol{\varepsilon}_{k}$ & $\boldsymbol{Y} = f(\boldsymbol{Z}|\boldsymbol{\theta}), \boldsymbol{Y} \in \{1, …, K\}$ \Tstrut \\ & $p_{ik} = \frac{\exp {(\boldsymbol{\beta}}_k^T \boldsymbol{X}_{ik})}{\sum_{p=1}^K \exp {(\boldsymbol{\beta}}_p^T \boldsymbol{X}_{ik})}, k \in \{1, ..., K\}$ \Tstrut & \\ \hline \textbf{Commonly used model type} & MNL, mixed logit, nested MNL, generalized MNL & NB, CART, BAG, BOOST, RF, SVM, NN \Tstrut\Bstrut \\ \hline \textbf{Prediction type} & Class probability: $p_{i1}, …, p_{iK}$ & Classification: $k, k \in \{1, ..., K\}$ \Tstrut\Bstrut \\ \hline \textbf{Input data} & $\boldsymbol{X}$ & $\boldsymbol{Z}$ \\ \hline \textbf{Model topology} & Layer structure & Layer structure, tree structure, case-based reasoning, etc. \Tstrut\Bstrut \\ \hline \textbf{Optimization method} & Maximum likelihood estimation, simulated maximum likelihood & Back propagation, gradient descent, recursive partitioning, structural risk minimization, maximum likelihood, etc. \\ \hline \textbf{Evaluation criteria} & (Adjusted) McFadden's pseudo $R^2$, AIC, BIC & Resampling-based measures, e.g., cross validation \Tstrut\Bstrut \\ \hline \textbf{Individual-level mode prediction} & $\argmax_k (\hat{p}_{i1}, ..., \hat{p}_{iK})$ & $\hat{Y}_i$ \Tstrut\Bstrut \\ \hline \textbf{Aggregate-level mode share prediction} & $P_k(\boldsymbol{X}_k|\hat{ \boldsymbol{\beta}}_k) = \sum_i^N \hat{p}_{ik}/N$ & $Q_k(\boldsymbol{Z}|\hat{ \boldsymbol{\theta}}) = \sum_i^N \hat{p}_{ik}/N$ \Tstrut \\ \hline \textbf{Variable importance} & Standardized Beta coefficients & Variable importance, computed by using Gini index, out-of-bag error, and many others \Tstrut\Bstrut \\ \hline \textbf{Variable effects} & Sign and magnitude of Beta coefficients & Partial dependence plots \Tstrut\Bstrut \\ \hline \textbf{Arc elasticity of feature $p$ for alternative $k$} & $E_k(\boldsymbol{X}_{k,p}) = \frac{[P_k(\boldsymbol{X}_{k,-p}, \boldsymbol X_{k,p} \cdot (1+\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)]/P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut & $E_k(\boldsymbol{Z}_{p}) = \frac{[Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} \cdot (1+\Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)]/Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut \\ \hline \textbf{Marginal effects of feature $p$ for alternative $k$} & $M_k(\boldsymbol{X}_{k,p}) = \frac{P_k(\boldsymbol{X}_{k,-p}, \boldsymbol{X}_{k,p} +\Delta) | \hat{ \boldsymbol{\beta}}_k) - P_k(\boldsymbol{X}_{k} | \hat{ \boldsymbol{\beta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut & $M_k(\boldsymbol{Z}_{p}) = \frac{Q_k(\boldsymbol{Z}_{-p}, \boldsymbol Z_{p} + \Delta) | \hat{ \boldsymbol{\theta}}_k) - Q_k(\boldsymbol{Z} | \hat{ \boldsymbol{\theta}}_k)}{|\Delta|},$ $k \in \{1, ..., K\}$ \Tstrut \\ \hline \end{tabular} } \label{tab:comparison} \end{table}
[ [ "", "Logit Models", "Machine-Learning Models" ], [ "Model formulation", "Uk(Xk|β k) = βT Xk + εk\nk\npik = pe =x 1p ( xβ pT k X pi k X) ik), k ∈{1, ..., K}\nPK e ( βT", "Y = f(Z|θ), Y ∈{1, . . . , K}" ], [ "Commonly used\nmodel type", "MNL, mixed logit, nested MNL, generalized MNL", "NB, CART, BAG, BOOST, RF, SVM, NN" ], [ "Prediction type", "Class probability: pi1, . . . , piK", "Classification: k, k ∈{1, ..., K}" ], [ "Input data", "X", "Z" ], [ "Model topology", "Layer structure", "Layer structure, tree structure, case-based rea-\nsoning, etc." ], [ "Optimization\nmethod", "Maximum likelihood estimation, simulated maximum like-\nlihood", "Back propagation, gradient descent, recursive\npartitioning, structural risk minimization, max-\nimum likelihood, etc." ], [ "Evaluation crite-\nria", "(Adjusted) McFadden’s pseudo R2, AIC, BIC", "Resampling-based measures, e.g., cross validation" ], [ "Individual-level\nmode prediction", "arg max k(pˆi1, ..., pˆiK)", "Yˆ\ni" ], [ "Aggregate-level\nmode share pre-\ndiction", "Pk(Xk|βˆ k) = PN pˆik/N\ni", "Qk(Z|θˆ) = PN pˆik/N\ni" ], [ "Variable impor-\ntance", "Standardized Beta coefficients", "Variable importance, computed by using Gini in-\ndex, out-of-bag error, and many others" ], [ "Variable effects", "Sign and magnitude of Beta coefficients", "Partial dependence plots" ], [ "Arc elasticity of\nfeature p for alter-\nnative k", "Ek(Xk,p) = [Pk(Xk,−p,Xk,p·(1+∆)|βˆ |k ∆) |−Pk(Xk|βˆ k)]/Pk(Xk|βˆ k),\nk ∈{1, ..., K}", "Ek(Zp) = [Qk(Z −p,Zp·(1+∆)|θˆ k |∆)− |Qk(Z|θˆ k)]/Qk(Z|θˆ k),\nk ∈{1, ..., K}" ], [ "Marginal effects\nof feature p for\nalternative k", "Mk(Xk,p) = Pk(Xk,−p,Xk,p+ |∆ ∆) ||βˆ k)−Pk(Xk|βˆ k), k ∈\n{1, ..., K}", "Mk(Zp) = Qk(Z −p,Zp+∆ |∆)| |θˆ k)−Qk(Z|θˆ k), k ∈\n{1, ..., K}" ] ]
0.590293
null
null
3
1811.01315v2
23
[ 144.75999450683594, 133.2239990234375, 446.61297607421875, 394.0460205078125 ]
\begin{table}[!t] \caption{Ranking of Variable Importance for RF, NN, MNL, and Mixed Logit} \begin{tabular}{c|cccc} \hline \textbf{Variable} & \textbf{RF} & \textbf{NN} & \textbf{MNL} & \textbf{Mixed logit} \\ \hline TT\_Walk & 1 & 16 & 2 & 2 \\ TT\_Drive & 2 & 14 & 4 & 5 \\ TT\_Bike & 3 & 13 & 1 & 1 \\ TT\_PT & 4 & 11 & 3 & 3 \\ Current\_Mode\_Bike & 5 & 2 & 5 & 10 \\ PT\_Access & 6 & 8 & 13 & 16 \\ Bike\_Walkability & 7 & 6 & 16 & 13 \\ Income & 8 & 10 & 14 & 15 \\ CarPerCap & 9 & 7 & 11 & 14 \\ Current\_Mode\_Walk & 10 & 1 & 6 & 12 \\ Rideshare & 11 & 9 & 9 & 9 \\ Transfer & 12 & 5 & 8 & 8 \\ Wait\_Time & 13 & 15 & 10 & 11 \\ Female & 14 & 3 & 15 & 17 \\ Parking\_Cost & 15 & 12 & 12 & 4 \\ Current\_Mode\_Car & 16 & 4 & 7 & 6 \\ Current\_Mode\_PT & / & / & 17 & 7 \\ \hline \end{tabular} \label{tab:VarImp} \end{table}
[ [ "Variable", "RF NN MNL Mixed logit" ], [ "TT Walk\nTT Drive\nTT Bike\nTT PT\nCurrent Mode Bike\nPT Access\nBike Walkability\nIncome\nCarPerCap\nCurrent Mode Walk\nRideshare\nTransfer\nWait Time\nFemale\nParking Cost\nCurrent Mode Car\nCurrent Mode PT", "1 16 2 2\n2 14 4 5\n3 13 1 1\n4 11 3 3\n5 2 5 10\n6 8 13 16\n7 6 16 13\n8 10 14 15\n9 7 11 14\n10 1 6 12\n11 9 9 9\n12 5 8 8\n13 15 10 11\n14 3 15 17\n15 12 12 4\n16 4 7 6\n/ / 17 7" ] ]
0.388098
null
null
0
1612.03079v2
4
[ 315.16583760579425, 72.198974609375, 544.1151428222656, 127.791015625 ]
\begin{table}[t] \centering \small % \subfloat[Benchmark Datasets]{ \begin{tabular}[b]{ | l | l | l | c | c | c | } \hline \textbf{Dataset} & \textbf{Type} & \textbf{Size} & \textbf{Features} & \textbf{Labels} \\ \hline MNIST \cite{mnist} & Image & 70K & 28x28 & 10 \\ CIFAR \cite{cifardata} & Image & 60k & 32x32x3 & 10 \\ ImageNet \cite{imagenet} & Image & ~1.26M & 299x299x3 & 1000 \\ Speech \cite{timit} & Sound & 6300 & 5 sec. & 39 \\ \hline \end{tabular} \vspace{-4mm} \caption{\small \textbf{Datasets.} The collection of real-world benchmark datasets used in the experiments.} \vspace{-5mm} \label{tab:datasets} \end{table}
[ [ "Dataset", "Type", "Size", "Features", "Labels" ], [ "MNIST [35]\nCIFAR [32]\nImageNet [49]\nSpeech [24]", "Image\nImage\nImage\nSound", "70K\n60k\n1.26M\n6300", "28x28\n32x32x3\n299x299x3\n5 sec.", "10\n10\n1000\n39" ] ]
0.397436
null
null
0
1109.6846v2
12
[ 151.30999755859375, 85.44000244140625, 460.69014630998885, 171.51702880859375 ]
\begin{table} \label{table:sham} \begin{center} \begin{tabular}{|c||c|c|} \hline observed degree & \# predicted ($E[N_{\delta,\rho^*}]$) & \# actual ($N_{\delta,\rho^*}$) \\ \hline $d_i\geq \delta =1$ & 8531 & 8492 \\ \hline $d_i\geq \delta =2$ & 1697 & 1635 \\ \hline $d_i\geq \delta =3$ & 234 & 229 \\ \hline $d_i\geq \delta =4$ & 24 & 28 \\ \hline $d_i\geq \delta =5$ & 2 & 4 \\ \hline \end{tabular} \caption{Fidelity of the predicted (mean) number of false positives and the observed number of false positives in the realization of the sham NKI dataset experiment shown in Fig. \ref{fig:pv1}}. \end{center} \end{table}
[ [ "observed degree", "# predicted (E[N ])\nδ,ρ∗", "# actual (N )\nδ,ρ∗" ], [ "d δ = 1\ni ≥", "8531", "8492" ], [ "d δ = 2\ni ≥", "1697", "1635" ], [ "d δ = 3\ni ≥", "234", "229" ], [ "d δ = 4\ni ≥", "24", "28" ], [ "d δ = 5\ni ≥", "2", "4" ] ]
0.44316
null
null
0
2305.02029v1
18
[ 110.85399627685547, 142.59100341796875, 534.9630126953125, 623.68701171875 ]
\begin{table}[!htbp] \begin{tabular}{|p{0.88\textwidth}|p{0.15\textwidth}|} \hline High Probability Words & Suggested topic\\ \hline 0.018*"quote" + 0.013*"ebay" + 0.010*"finance" + 0.009*"premium" + 0.009*"level" + 0.008*"performance" + 0.007*"new\_car" + 0.007*"expensive" + 0.007*"struggle" + 0.006*"advance" & package\\ \hline 0.019*"data" + 0.015*"flag" + 0.013*"meet" + 0.011*"retail\_check" + 0.010*"price\_indicator" + 0.010*"spec" + 0.008*"sit" + 0.008*"valuations" + 0.007*"group" + 0.007*"price\_flags" & price indicator flags\\ \hline 0.012*"request" + 0.012*"admin\_fees" + 0.011*"video" + 0.007*"find" + 0.007*"image" + 0.006*"actually" + 0.006*"query" + 0.006*"frustrate" + 0.005*"spec" + 0.005*"unhappy" & unhappy\\ \hline 0.017*"image" + 0.013*"rat" + 0.012*"new\_car" + 0.010*"highly" + 0.009*"upload" + 0.008*"reply" + 0.008*"award" + 0.007*"consumers" + 0.006*"info" + 0.006*"message" & live chat\\ \hline 0.012*"text" + 0.011*"valuations" + 0.011*"product" + 0.010*"chat" + 0.009*"lose" + 0.007*"tech" + 0.007*"margin" + 0.006*"platform" + 0.006*"retail" + 0.006*"higher" & valuations\\ \hline 0.010*"retract" + 0.008*"close" + 0.008*"open" + 0.007*"watch" + 0.007*"webinar" + 0.006*"book" + 0.006*"phone" + 0.006*"process" + 0.006*"answer" + 0.006*"charge" & process related\\ \hline 0.011*"staff" + 0.010*"coronavirus" + 0.010*"reduce" + 0.010*"lockdown" + 0.009*"canx" + 0.009*"plan" + 0.008*"struggle" + 0.008*"online" + 0.008*"june" + 0.008*"continue" & coronavirus\\ \hline 0.016*"lockdown" + 0.010*"june" + 0.010*"collect" + 0.008*"open" + 0.008*"retract" + 0.007*"confuse" + 0.007*"follow" + 0.007*"aware" + 0.007*"extend" + 0.007*"appreciate" & lockdown extensions\\ \hline 0.061*"xxxemailxxx" + 0.023*"subject" + 0.015*"group" + 0.013*"kind" + 0.009*"xxxtelephonexxx" + 0.008*"sit" + 0.008*"retail" + 0.007*"lead" + 0.007*"manheim" + 0.006*"option" & no recognised subject\\ \hline 0.027*"year" + 0.016*"experian" + 0.008*"car\_gurus" + 0.007*"ebay" + 0.006*"meet" + 0.006*"zuto" + 0.006*"july" + 0.005*"achieve" + 0.005*"award" + 0.005*"normal" & rival valuation products\\ \hline \end{tabular} \caption{Topic modelling results from the AutoTrader note corpus, with sector expert led topic naming suggestions.} \label{table:1} \end{table}
[ [ "High Probability Words", "Suggested\ntopic" ], [ "0.018*”quote” + 0.013*”ebay” + 0.010*”finance” + 0.009*”pre-\nmium” + 0.009*”level” + 0.008*”performance” + 0.007*”new car”\n+ 0.007*”expensive” + 0.007*”struggle” + 0.006*”advance”", "package" ], [ "0.019*”data” + 0.015*”flag” + 0.013*”meet” + 0.011*”re-\ntail check” + 0.010*”price indicator” + 0.010*”spec” + 0.008*”sit”\n+ 0.008*”valuations” + 0.007*”group” + 0.007*”price flags”", "price indi-\ncator flags" ], [ "0.012*”request” + 0.012*”admin fees” + 0.011*”video” +\n0.007*”find” + 0.007*”image” + 0.006*”actually” + 0.006*”query”\n+ 0.006*”frustrate” + 0.005*”spec” + 0.005*”unhappy”", "unhappy" ], [ "0.017*”image” + 0.013*”rat” + 0.012*”new car” + 0.010*”highly”\n+ 0.009*”upload” + 0.008*”reply” + 0.008*”award” + 0.007*”con-\nsumers” + 0.006*”info” + 0.006*”message”", "live chat" ], [ "0.012*”text” + 0.011*”valuations” + 0.011*”product” +\n0.010*”chat” + 0.009*”lose” + 0.007*”tech” + 0.007*”mar-\ngin” + 0.006*”platform” + 0.006*”retail” + 0.006*”higher”", "valuations" ], [ "0.010*”retract” + 0.008*”close” + 0.008*”open” + 0.007*”watch”\n+ 0.007*”webinar” + 0.006*”book” + 0.006*”phone” +\n0.006*”process” + 0.006*”answer” + 0.006*”charge”", "process re-\nlated" ], [ "0.011*”staff” + 0.010*”coronavirus” + 0.010*”reduce” +\n0.010*”lockdown” + 0.009*”canx” + 0.009*”plan” + 0.008*”strug-\ngle” + 0.008*”online” + 0.008*”june” + 0.008*”continue”", "coronavirus" ], [ "0.016*”lockdown” + 0.010*”june” + 0.010*”collect” +\n0.008*”open” + 0.008*”retract” + 0.007*”confuse” + 0.007*”fol-\nlow” + 0.007*”aware” + 0.007*”extend” + 0.007*”appreciate”", "lockdown\nextensions" ], [ "0.061*”xxxemailxxx” + 0.023*”subject” + 0.015*”group” +\n0.013*”kind” + 0.009*”xxxtelephonexxx” + 0.008*”sit” +\n0.008*”retail” + 0.007*”lead” + 0.007*”manheim” + 0.006*”op-\ntion”", "no recog-\nnised\nsubject" ], [ "0.027*”year” + 0.016*”experian” + 0.008*”car gurus” +\n0.007*”ebay” + 0.006*”meet” + 0.006*”zuto” + 0.006*”july”\n+ 0.005*”achieve” + 0.005*”award” + 0.005*”normal”", "rival valua-\ntion prod-\nucts" ] ]
0.484109
null
null
1
2305.02029v1
30
[ 240.21800231933594, 414.81500244140625, 370.03299289279516, 533.5689697265625 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|} \hline Clean & Baseline\\ \hline Valuation &0.97 \\ \hline Price &0.76 \\ \hline Package &0.78 \\ \hline Cancellation &0.63 \\ \hline Stock &0.68 \\ \hline Tech &0.86 \\ \hline Billing &0.56 \\ \hline \end{tabular} \caption{ Baseline NDCG evaluations for the clean data. } \label{table:2} \end{table}
[ [ "Clean", "Baseline" ], [ "Valuation", "0.97" ], [ "Price", "0.76" ], [ "Package", "0.78" ], [ "Cancellation", "0.63" ], [ "Stock", "0.68" ], [ "Tech", "0.86" ], [ "Billing", "0.56" ] ]
0.795455
null
null
2
2305.02029v1
31
[ 236.98399353027344, 125.99700927734375, 373.26800537109375, 244.75201416015625 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|} \hline Pre-processed & Baseline\\ \hline Valuation &0.97 \\ \hline Price &0.76 \\ \hline Package &0.78 \\ \hline Cancellation &0.63 \\ \hline Stock &0.68 \\ \hline Tech &0.86 \\ \hline Billing &0.57 \\ \hline \end{tabular} \caption{ Baseline NDCG evaluations for the pre-processed data. } \label{table:3} \end{table}
[ [ "Pre-processed", "Baseline" ], [ "Valuation", "0.97" ], [ "Price", "0.76" ], [ "Package", "0.78" ], [ "Cancellation", "0.63" ], [ "Stock", "0.68" ], [ "Tech", "0.86" ], [ "Billing", "0.57" ] ]
0.784722
null
null
3
2305.02029v1
31
[ 180.26300048828125, 465.95098876953125, 429.9880065917969, 584.7059936523438 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.96 & -0.01\\ \hline Price &0.72 & -0.04\\ \hline Package &0.74 & -0.04\\ \hline Cancellation &0.60 & -0.03\\ \hline Stock &0.67 & -0.01\\ \hline Tech &0.92 & +0.06\\ \hline Billing &0.55 & -0.02\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``tech issue" on the pre-processed data.} \label{table:4} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.96", "-0.01" ], [ "Price", "0.72", "-0.04" ], [ "Package", "0.74", "-0.04" ], [ "Cancellation", "0.60", "-0.03" ], [ "Stock", "0.67", "-0.01" ], [ "Tech", "0.92", "+0.06" ], [ "Billing", "0.55", "-0.02" ] ]
0.808612
null
null
4
2305.02029v1
32
[ 180.26300048828125, 125.99700927734375, 429.9880065917969, 244.75201416015625 ]
\begin{table}[h!] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.97 & 0.00\\ \hline Price &0.86 & +0.10\\ \hline Package &0.79 & +0.01\\ \hline Cancellation &0.66 & +0.03\\ \hline Stock &0.68 & 0.00\\ \hline Tech &0.82 & -0.04\\ \hline Billing &0.54 & -0.03\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``too expensive" on the pre-processed data.} \label{table:5} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.97", "0.00" ], [ "Price", "0.86", "+0.10" ], [ "Package", "0.79", "+0.01" ], [ "Cancellation", "0.66", "+0.03" ], [ "Stock", "0.68", "0.00" ], [ "Tech", "0.82", "-0.04" ], [ "Billing", "0.54", "-0.03" ] ]
0.800959
null
null
5
2305.02029v1
32
[ 180.26300048828125, 399.7929992675781, 429.9880065917969, 518.5469970703125 ]
\begin{table}[h] \centering \begin{tabular}{|c|c|c|} \hline Topic & Score & Difference from baseline\\ \hline Valuation &0.96 & -0.01\\ \hline Price &0.75 & -0.01\\ \hline Package &0.74 & -0.04\\ \hline Cancellation &0.65 & -0.02\\ \hline Stock &0.64 & -0.04\\ \hline Tech &0.84 & -0.02\\ \hline Billing &0.68 & +0.11\\ \hline \end{tabular} \caption{NDCG evaluations for the query ``send money" on the pre-processed data.} \label{table:6} \end{table}
[ [ "Topic", "Score", "Difference from baseline" ], [ "Valuation", "0.96", "-0.01" ], [ "Price", "0.75", "-0.01" ], [ "Package", "0.74", "-0.04" ], [ "Cancellation", "0.65", "-0.02" ], [ "Stock", "0.64", "-0.04" ], [ "Tech", "0.84", "-0.02" ], [ "Billing", "0.68", "+0.11" ] ]
0.808612
null
null
0
1807.08372v1
7
[ 319.5, 455.5369873046875, 562.2869873046875, 560.343994140625 ]
\begin{table}[h!] \begin{smallermathTable} \scriptsize{ \centering \begin{tabular}[t]{p{1.52cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{0.98cm}<{\centering}} \hline TBox Axi.: 541 & Concept Ast. Ent.: 1824 &Role Ast. Ent.: 4528 & Individual: 1159 & Ext. Axi.: $\sim21$ K \\\hline \hline Parameters ($\sigma, \kappa, \tau$) & Root Concept Ast. Ent.& Root Role Ast. Ent. & Root Individual & External Axioms\\\hline P1:($.90, 1, .40$) & $1105$ ($61\%$) & $3805$ ($84\%$) & $1103$ ($95\%$) & $\sim$ $20$ K \\\hline P2:($.93, 1, .43$) & $990$ ($54\%$) & $3459$ ($76\%$) & $1080$ ($93\%$) & $\sim$ $19$ K \\\hline P3:($.96, 1, .46$) & $540$ ($30\%$) & $1816$ ($40\%$)& $872$ ($75\%$) & $\sim$ $16$ K \\\hline P4:($.99, 1, .49$) & $305$ ($17\%$) &$980$ ($22\%$) &$510$ ($44\%$) & $6271$ \\\hline P5:($.99, 2, .49$) & $157$ ($8.6\%$) & $402$ ($8.9\%$)& $108$ ($9.3\%$) & $615$ \\\hline \end{tabular} \vspace{-0.25cm} \caption{\label{res:count} Average Number of Root Entailments, Root Individuals and External Axioms per Learning Domain.} } \end{smallermathTable} \end{table}
[ [ "TBox Axi.:\n541", "Concept Ast.\nEnt.: 1824", "Role Ast.\nEnt.: 4528", "Individual:\n1159", "Ext. Axi.:\n∼21 K" ], [ "Parameters\n(σ, κ, τ)", "Root\nConcept Ast.\nEnt.", "Root Role\nAst. Ent.", "Root\nIndividual", "External\nAxioms" ], [ "P1:(.90, 1, .40)", "1105 (61%)", "3805 (84%)", "1103 (95%)", "∼20 K" ], [ "P2:(.93, 1, .43)", "990 (54%)", "3459 (76%)", "1080 (93%)", "∼19 K" ], [ "P3:(.96, 1, .46)", "540 (30%)", "1816 (40%)", "872 (75%)", "∼16 K" ], [ "P4:(.99, 1, .49)", "305 (17%)", "980 (22%)", "510 (44%)", "6271" ], [ "P5:(.99, 2, .49)", "157 (8.6%)", "402 (8.9%)", "108 (9.3%)", "615" ] ]
0.563758
null
null
0
2406.18112v1
6
[ 175.6929931640625, 476.9800109863281, 439.6631202697754, 558.0750122070312 ]
\begin{table} \caption{Averaged compute time of time steps in milliseconds for different parts of the in transit and hybrid analysis.}\label{tab-benchmark} \centering \begin{tabular}{|l|l|l|l|l|} \hline & \multicolumn{2}{c|}{\emph{Slice} Pipeline} & \multicolumn{2}{c|}{\emph{Resampling} Pipeline} \\ \cline{2-5} & In Transit & Hybrid & In Transit & Hybrid \\ \hline Simulation Time (ms) & 15860 & 15835 & 33539 & 31677\\ \hline Reduction Time (ms) & 0 & 319 & 0 & 2905\\ \hline Data Transfer Time (ms)& 3415 & 6.56 & 10957 & 48.7 \\ \hline \hline Total Time (ms)& 19275 & 16161 & 44497 & 34632 \\ \hline Total Gain & \multicolumn{2}{c|}{16.16\%} & \multicolumn{2}{c|}{22.17\%}\\ \hline \end{tabular} \end{table}
[ [ "", "Slice Pipeline", null, "Resampling Pipeline", null ], [ null, "In Transit", "Hybrid", "In Transit", "Hybrid" ], [ "Simulation Time (ms)", "15860", "15835", "33539", "31677" ], [ "Reduction Time (ms)", "0", "319", "0", "2905" ], [ "Data Transfer Time (ms)", "3415", "6.56", "10957", "48.7" ], [ "Total Time (ms)", "19275", "16161", "44497", "34632" ], [ "Total Gain", "16.16%", null, "22.17%", null ] ]
0.875676
null
null
0
1710.09593v2
11
[ 172.50189039442273, 134.217041015625, 442.85411241319446, 284.2540283203125 ]
\begin{table}[!htb] \centering \caption{The characteristics of the used Machines} \label{capa} \begin{tabular}{|c|c|c|c|} \hline \textbf{Machine's name} & \textbf{Operating System} & \textbf{Processor} & \textbf{Memory} \\\hline Dell-XPS L421X& \pbox{50cm}{Ubuntu \\ (V.14.04 LTS) }& \pbox{50cm}{1.8GHz*4 \\ Intel Core i5} & 8 GB \\ \hline Dell-Inspiron-3721 & \pbox{50cm}{Ubuntu \\ (V.14.04 LTS)} & \pbox{50cm}{2.00GHz*4 \\Intel Core i5 }& 4 GB \\\hline Dell-Inspiron-3521 & \pbox{50cm}{ Ubuntu \\(V.16.04 LTS)} &\pbox{50cm}{ 1.8 GHz*4 \\Intel Core i5 } & 6 GB \\\hline iMac-Early 2010 & \pbox{50cm}{cinux Mint \\ (V.17.1 Rebecca) }& \pbox{50cm}{3.06GHz*2} & 4 GB \\ \hline Dell-Inspiron-5559 & \pbox{50cm}{Ubuntu \\ (V.16.04 LTS) }& \pbox{50cm}{2.30GHz*4 \\ Intel Core i5} & 8 GB \\\hline iMac-Early 2009 & \pbox{50cm}{OS X El Capitan \\(V.10.11.6)} &\pbox{50cm}{ 2.93 *2 GHz \\Intel Core Due}& 8 GB \\\hline MacBook Air & \pbox{50cm}{OS X El Capitan \\(V.10.11.3)} &\pbox{50cm}{ 1.6 *2 GHz \\Intel Core i5 }& 8 GB \\\hline \end{tabular} \end{table}
[ [ "Machine’s name", "Operating System", "Processor", "Memory" ], [ "Dell-XPS L421X", "Ubuntu\n(V.14.04 LTS)", "1.8GHz*4\nIntel Core i5", "8 GB" ], [ "Dell-Inspiron-3721", "Ubuntu\n(V.14.04 LTS)", "2.00GHz*4\nIntel Core i5", "4 GB" ], [ "Dell-Inspiron-3521", "Ubuntu\n(V.16.04 LTS)", "1.8 GHz*4\nIntel Core i5", "6 GB" ], [ "iMac-Early 2010", "cinux Mint\n(V.17.1 Rebecca)", "3.06GHz*2", "4 GB" ], [ "Dell-Inspiron-5559", "Ubuntu\n(V.16.04 LTS)", "2.30GHz*4\nIntel Core i5", "8 GB" ], [ "iMac-Early 2009", "OS X El Capitan\n(V.10.11.6)", "2.93 *2 GHz\nIntel Core Due", "8 GB" ], [ "MacBook Air", "OS X El Capitan\n(V.10.11.3)", "1.6 *2 GHz\nIntel Core i5", "8 GB" ] ]
0.944043
null
null
1
1710.09593v2
11
[ 198.75824737548828, 412.72900390625, 416.5977554321289, 490.63702392578125 ]
\begin{table}[!htb] \centering \caption{Datasets} \label{DS} \begin{tabular}{|c|c|c|} \hline \textbf{Benchmark}& \textbf{Size} & \textbf{Descriptions} \\\hline \textbf{D1}& 10,000 Points & \begin{tabular}[c]{@{}c@{}}Different shapes, with \\ some clusters surrounded\\ by others\end{tabular} \\\hline \textbf{D2}& 30,000 Points& \begin{tabular}[c]{@{}c@{}}2 small circles,\\ 1 big circle\\ and 2 linked ovals\end{tabular} \\ \hline \end{tabular} \end{table}
[ [ "Benchmark", "Size", "Descriptions" ], [ "D1", "10,000 Points", "Different shapes, with\nsome clusters surrounded\nby others" ], [ "D2", "30,000 Points", "2 small circles,\n1 big circle\nand 2 linked ovals" ] ]
0.532751
null
null
0
2306.00454v1
5
[ 126.68000030517578, 109.06097412109375, 485.0359802246094, 228.74564615885416 ]
\begin{table} \centering % \begin{tabular}{l|cc} \hline & Reaction rate for $d(p,\gamma)^{3}{\rm He}$ & $D_{p}$ data \tabularnewline \hline \hline { } Case I & Adelberger et al. & no-data\tabularnewline { } Case II & Adelberger et al. & Cooke et al. + offset \tabularnewline { } Case III & Adelberger et al. & Cooke et al.\tabularnewline { } Case IV & Marcucci et al. & Cooke et al.\tabularnewline { } Case V & Marcucci et al. & recent 11 weighted mean\tabularnewline { } Case VI & Pisanti et al. & Cooke et al.\tabularnewline { } Case VII & Pisanti et al. & recent 11 weighted mean\tabularnewline \hline \hline \end{tabular}\caption{\label{tab:Dp_treatment} Combinations of the data of $D_{p}$ and theoretical treatment of the reaction rate for $d(p,\gamma)^{3}{\rm He}$ used in our analysis. } \end{table}
[ [ "", "Reaction rate for d(p, γ)3He D data\np" ], [ "Case I\nCase II\nCase III\nCase IV\nCase V\nCase VI\nCase VII", "Adelberger et al. no-data\nAdelberger et al. Cooke et al. + offset\nAdelberger et al. Cooke et al.\nMarcucci et al. Cooke et al.\nMarcucci et al. recent 11 weighted mean\nPisanti et al. Cooke et al.\nPisanti et al. recent 11 weighted mean" ] ]
0.484118
null
null
0
2103.08664v1
3
[ 359.14009941948785, 104.84100341796875, 509.2700025770399, 141.50299072265625 ]
\begin{table}[t] \centering \caption{Test accuracy of different training strategies on Physionet data: left fist VS right fist (task 2); both fists VS both feet (task 4).} \begin{tabular}{|c|cc|}\hline motor imagery task & task 2 & task 4 \\ \hline conventional learning & 59.6\% & 66.6\% \\ transfer learning & 56.0\% & 62.4\% \\ meta-learning & \textbf{64.5\%} & \textbf{68.2\%} \\ \hline \end{tabular} \label{tab:5} \end{table}
[ [ "motor imagery task", "task 2 task 4" ], [ "conventional learning\ntransfer learning\nmeta-learning", "59.6% 66.6%\n56.0% 62.4%\n64.5% 68.2%" ] ]
0.786885
null
null
1
2103.08664v1
3
[ 359.14009941948785, 703.6309814453125, 509.2700025770399, 731.3280029296875 ]
\begin{table}[b] \centering \caption{Test accuracy on Physionet data after online sample filtering} \begin{tabular}{|c|cc|} \hline motor imagery task & task 2 & task 4 \\ \hline without meta-learning & 67.9\% & 68.8\% \\ with meta-learning & \textbf{80.6\%} & \textbf{79.7\%}\\ \hline \end{tabular} \label{tab:7} \end{table}
[ [ "motor imagery task", "task 2 task 4" ], [ "without meta-learning\nwith meta-learning", "67.9% 68.8%\n80.6% 79.7%" ] ]
0.846939
null
null
0
2109.05142v1
2
[ 54, 68.0570068359375, 298.39300537109375, 124.04901123046875 ]
\begin{table}[ht] \centering \begin{tabular}{|c|c|p{1.3in}|} \hline \textbf{Data Source}& \textbf{Data Model} &\multicolumn{1}{c|}{\textbf{Polystore Placement}} \\ \hline Patents &Relational &PostgreSQL, Text in Solr \\ \hline News articles &Structured Text &Solr, Entity Network in Neo4J \\ \hline Federal Spending&Relational &PostgreSQL \\ \hline Company Networks&Graph &Neo4J \\ \hline \end{tabular} \vspace{1em} \caption{Data from a source are processed and placed into different stores.} \label{tab:sources} \vspace{-1.3em} \end{table}
[ [ "Data Source", "Data Model", "Polystore Placement" ], [ "Patents", "Relational", "PostgreSQL, Text in Solr" ], [ "News articles", "Structured Text", "Solr, Entity Network in\nNeo4J" ], [ "Federal Spending", "Relational", "PostgreSQL" ], [ "Company Networks", "Graph", "Neo4J" ] ]
0.821497
null
null
0
1911.00108v2
5
[ 315.1610107421875, 71.31903076171875, 536.5859497070312, 143.1500244140625 ]
\begin{table}[H] \centering \small \begin{tabular}{|l|l|l|} \hline \textbf{Method} & \textbf{Average Accuracy} & \textbf{stdev} \\ \hline TPOT & 0.816 & 0.159 \\ \hline auto-sklearn(V) & 0.796 & 0.168 \\ \hline auto-sklearn(E) & 0.805 & 0.165 \\ \hline RankML \#1 rank & 0.786 & 0.169 \\ \hline RankML Max top-5 rank &0.819 & 0.154 \\ \hline RankML Max top-10 rank &\textbf{0.827} & 0.152 \\ \hline \end{tabular} \caption[Average accuracy Results]{Average accuracy results across 149 classification datasets.} \label{table:1} \end{table}
[ [ "Method", "Average Accuracy", "stdev" ], [ "TPOT", "0.816", "0.159" ], [ "auto-sklearn(V)", "0.796", "0.168" ], [ "auto-sklearn(E)", "0.805", "0.165" ], [ "RankML #1 rank", "0.786", "0.169" ], [ "RankML Max top-5 rank", "0.819", "0.154" ], [ "RankML Max top-10 rank", "0.827", "0.152" ] ]
0.795181
null
null
1
1911.00108v2
5
[ 305.25987752278644, 177.13555908203125, 550.0725606282552, 222.65481567382812 ]
\begin{table}[H] \resizebox{\columnwidth}{!}{% \begin{tabular}{|l|c|c|c|} \hline \multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4} \multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline RankML \#1 rank & 65(49\%) & 74(55\%) & 68(51\%) \\ \hline RankML Max top-5 rank & 102(73\%) & 112(80\%) & 112(80\%) \\ \hline RankML Max top-10 rank & \textbf{110(79\%)} & \textbf{119(85\%)} & \textbf{118(84\%)} \\ \hline \end{tabular}% } \caption{The number of classification datasets each method got better or comparable(BOC) results against baselines (percentage is out of valid datasets).} \label{table:2} \end{table}
[ [ "Method", "Number of Datasets with BOC Performance(%)", null, null ], [ null, "TPOT", "auto-sklearn(V)", "auto-sklearn(E)" ], [ "RankML #1 rank", "65(49%)", "74(55%)", "68(51%)" ], [ "RankML Max top-5 rank", "102(73%)", "112(80%)", "112(80%)" ], [ "RankML Max top-10 rank", "110(79%)", "119(85%)", "118(84%)" ] ]
0.679487
null
null
2
1911.00108v2
6
[ 303.395884253762, 480.09014892578125, 550.0364815848214, 613.9104614257812 ]
\begin{table}[H] \centering \resizebox{\columnwidth}{!}{% \begin{tabular}{|m{3.3cm}|m{2cm}|m{1.1cm}|} \hline \multicolumn{1}{|c|}{\textbf{Primitive}} & \multicolumn{1}{c|}{\textbf{Family}} & \multicolumn{1}{c|}{\textbf{\begin{tabular}[c]{@{}c@{}}Avg \% \\ of appearances\end{tabular}}} \\ \hline MaxAbsScaler & Data pre-processing & 16\% \\ \hline StandardScaler & Data pre-processing & 11\% \\ \hline KNeighborsClassifier & Predictive models & 10\% \\ \hline RandomForestClassifier & Predictive models& 4\% \\ \hline PCA & Feature pre-processing & 0.4\% \\ \hline \end{tabular}% } \caption{A selection of primitives used in RankML recommended pipelines for classification. "Avg \% of appearances" is out of all primitives. } \label{table:4} \end{table}
[ [ "Primitive Family", "Avg %\nof appearances" ], [ "Data pre-\nMaxAbsScaler\nprocessing", "16%" ], [ "Data pre-\nStandardScaler\nprocessing", "11%" ], [ "Predictive mod-\nKNeighborsClassifier\nels", "10%" ], [ "Predictive mod-\nRandomForestClassifier\nels", "4%" ], [ "Feature pre-\nPCA\nprocessing", "0.4%" ] ]
0.410774
null
null
3
1911.00108v2
7
[ 42.245869954427086, 264.8241271972656, 287.0585581461589, 309.4196014404297 ]
\begin{table} \resizebox{\columnwidth}{!}{% \begin{tabular}{|l|c|c|c|} \hline \multicolumn{1}{|c|}{\multirow{2}{*}{\textbf{Method}}} & \multicolumn{3}{c|}{\textbf{Number of Datasets with BOC Performance(\%)}} \\ \cline{2-4} \multicolumn{1}{|c|}{} & \textbf{TPOT} & \textbf{auto-sklearn(V)} & \textbf{auto-sklearn(E)} \\ \hline RankML \#1 rank & 30(39\%) & 35(46\%) & 26(34\%) \\ \hline RankML Max top-5 rank & 39(49\%) & 47(59\%) & 41(52\%) \\ \hline RankML Max top-10 rank & \textbf{45(57\%)} & \textbf{53(67\%)} & \textbf{45(57\%)} \\ \hline \end{tabular}% } \caption{The number of regression datasets each version of our approach got better or comparable results against the baselines (percentage is out of valid datasets).} \label{table:1_reg} \end{table}
[ [ "Method", "Number of Datasets with BOC Performance(%)", null, null ], [ null, "TPOT", "auto-sklearn(V)", "auto-sklearn(E)" ], [ "RankML #1 rank", "30(39%)", "35(46%)", "26(34%)" ], [ "RankML Max top-5 rank", "39(49%)", "47(59%)", "41(52%)" ], [ "RankML Max top-10 rank", "45(57%)", "53(67%)", "45(57%)" ] ]
0.61244
null
null
0
1509.03329v1
5
[ 196.67799377441406, 518.427001953125, 398.59698486328125, 602.5120239257812 ]
\begin{table}[!ht] \caption{Summary of cuts applied in the \xeff\ analysis depending on the brightness of the source.} \begin{center} \begin{tabular}{|c|ccc|} \hline % \rowcolor{gray!10} Brightness &\phi12 & $\eta$ & \xeff\ \\% cut \\ % \rowcolor{gray!10} &\diffi&& \\ \hline \hline Very Bright & $>10$ & 0.1 & $<0.3$ \\ % \hline Bright & 1 ... 10 & 0.2 & $<0.3$ \\ % \hline Medium & 0.5 ... 1 & 0.4 & $<0.3$\\ % \hline Faint & $< 0.5 $ & 0.7 & $<0.3$ \\ % \hline % Very faint & $< 0.1 $ & 0.8 & 0.3 \\ % $<1 \% $ Crab &&& \\ % \hline \hline \end{tabular} \end{center} \label{tabcuts} \end{table}
[ [ "Brightness", "Φ(1TeV).10-12 η X\ne f f\ncm-2.s-1.TeV -1" ], [ "Very Bright\nBright\nMedium\nFaint", "> 10 0.1 < 0.3\n1 ... 10 0.2 < 0.3\n0.5 ... 1 0.4 < 0.3\n< 0.5 0.7 < 0.3" ] ]
0.58651
null
null
0
1904.08994v1
3
[ 149.78399658203125, 136.18902587890625, 462.2149963378906, 180.62200927734375 ]
\begin{table}[h!] \centering \begin{tabular}{c|l|l} \hline \textbf{Symbol} & \textbf{Meaning} & \textbf{Notes}\\ \hline $p_{z}$ & Data distribution over noise input $z$ & Usually, just uniform. \\ $p_{g}$ & The generator's distribution over data $x$ & \\ $p_{r}$ & Data distribution over real sample $x$ & \\ \hline \end{tabular} \end{table}
[ [ "Symbol", "Meaning", "Notes" ], [ "p\nz\np\ng\np\nr", "Data distribution over noise input z\nThe generator’s distribution over data x\nData distribution over real sample x", "Usually, just uniform." ] ]
0.813056
null
null
1
1904.08994v1
5
[ 133.77200317382812, 287.04998779296875, 478.22698974609375, 353.3009948730469 ]
\begin{table}[h!] \centering \begin{tabular}{c|p{10cm}} \hline \textbf{Term} & \textbf{Explanation} \\ \hline Manifold & A topological space that locally resembles Euclidean space near each point. Precisely, when this Euclidean space is of dimension $n$, the manifold is referred as $n$-manifold. \\ Support & A real-valued function $f$ is the subset of the domain containing those elements which are not mapped to zero.\\ \hline \end{tabular} \end{table}
[ [ "Term", "Explanation" ], [ "Manifold\nSupport", "A topological space that locally resembles Euclidean space near each\npoint. Precisely, when this Euclidean space is of dimension n, the\nmanifold is referred as n-manifold.\nA real-valued function f is the subset of the domain containing those\nelements which are not mapped to zero." ] ]
0.974522
null
null
0
1907.09456v3
4
[ 49.28083292643229, 78.68798828125, 293.8931528727214, 124.3170166015625 ]
\begin{table}[h] \centering \caption{Summary of \texttt{SCSF} Tuning Parameters} \begin{tabular}{|c|l|c|} \hline \textbf{Param.} & \textbf{Description} & \textbf{Value} \\ \hline $k$ & Rank of the matrix factorization & $6$ \\ $\tau$ & Approximate quantile of the data to be fit & $0.85$ \\ $\mu_L$ & Weight of the smoothing term on the left matrix & $500$ \\ $\mu_R$ & Weight of the smoothing term on the right matrix & $1000$ \\ \hline \end{tabular} \label{tab:tuning-param} \end{table}
[ [ "Param.", "Description", "Value" ], [ "k\nτ\nµL\nµR", "Rank of the matrix factorization\nApproximate quantile of the data to be fit\nWeight of the smoothing term on the left matrix\nWeight of the smoothing term on the right matrix", "6\n0.85\n500\n1000" ] ]
0.496788
null
null
1
1907.09456v3
4
[ 353.1228383382161, 670.615966796875, 522.1231892903646, 716.2449951171875 ]
\begin{table}[b] \centering \caption{\texttt{SCSF} Tuning Parameter Grid Search} \begin{tabular}{|c|c|c|c|} \hline \textbf{Param.} & \textbf{Low Val.} & \textbf{Mid Val.} & \textbf{High Val.} \\ \hline $k$ & $4$ & $6$ & $8$ \\ $\tau$ & $.8$ & $.85$ & $.9$ \\ $\mu_L$ & $1e2$ & $5e2$ & $1e3$ \\ $\mu_R$ & $5e2$ & $1e3$ & $5e3$ \\ \hline \end{tabular} \label{tab:tuning-study} \end{table}
[ [ "Param.", "Low Val.", "Mid Val.", "High Val." ], [ "k\nτ\nµL\nµR", "4\n.8\n1e2\n5e2", "6\n.85\n5e2\n1e3", "8\n.9\n1e3\n5e3" ] ]
0.666667
null
null
2
1907.09456v3
6
[ 320.7982116699219, 679.5830078125, 554.4480224609375, 716.2449951171875 ]
\begin{table}[b] \centering \caption{Summary of site selection for both methods} \begin{tabular}{|c|c|c|c|} \hline & & & \textbf{Unique} \\ & \textbf{Included Sites}& \textbf{Excluded Sites} & \textbf{Excluded Sites} \\ \hline \texttt{SCSF}& $551$ & $22$ & $19$ \\ \texttt{RdTools} & $387$ & $186$ & $183$\\ \hline \end{tabular} \label{tab:fleet-join} \end{table}
[ [ "", "Included Sites", "Excluded Sites", "Unique\nExcluded Sites" ], [ "SCSF\nRdTools", "551\n387", "22\n186", "19\n183" ] ]
0.737968
null
null
0
2211.08064v2
3
[ 312, 287.80499267578125, 549.5800170898438, 522.9420166015625 ]
\begin{table}[h] \begin{tabular}{c|c} \hline Notations & Description \\ \hline $u$ & state variables of the physical system \\ \hline $\boldsymbol{x}$ & spatial or spatial-temporal coordinates \\ \hline $x$ & spatial coordinates \\ \hline $t$ & temporal coordinates \\ \hline $\theta$ & parameters for a physical system \\ \hline $w$ & weights of neural networks \\ \hline $\frac{\partial}{\partial x_i}$ & partial derivatives operator \\ \hline $\mathcal{D}^k_i$ & $\frac{\partial^k}{\partial x_i^k}$, $k$-order derivatives for variable $x_i$ \\ \hline $\nabla$ & nabla operator (gradient) \\ \hline $\Delta$ & Laplace operator \\ \hline $\int$ & integral operator \\ \hline $\mathcal{F}$ & differential operator representing the PDEs/ODEs \\ \hline $\mathcal{I}$ & initial conditions (operator) \\ \hline $\mathcal{B}$ & boundary conditions (operator) \\ \hline $\Omega$ & spatial or spatial-temporal domain of the system \\ \hline $\Theta$ & space of the parameters $\theta$ \\ \hline $W$ & space of weights of neural networks \\ \hline $\mathcal{L}$ & loss functions \\ \hline $\mathcal{L}_r$ & residual loss \\ \hline $\mathcal{L}_b$ & boundary condition loss \\ \hline $\mathcal{L}_i$ & initial condition loss \\ \hline $l_k$ & residual (error) terms \\ \hline $\| \cdummy \|$ & norm of a vector or a function \\ \hline \end{tabular} \caption{A table of mathematical notations.} \label{tb1} \end{table}
[ [ "Notations", "Description" ], [ "u", "state variables of the physical system" ], [ "x", "spatial or spatial-temporal coordinates" ], [ "x", "spatial coordinates" ], [ "t", "temporal coordinates" ], [ "θ", "parameters for a physical system" ], [ "w", "weights of neural networks" ], [ "∂\n∂xi", "partial derivatives operator" ], [ "k\nDi", "∂∂ xk k, k-order derivatives for variable xi\ni" ], [ "∇", "nabla operator (gradient)" ], [ "∆", "Laplace operator" ], [ "R", "integral operator" ], [ "F", "differential operator representing the PDEs/ODEs" ], [ "I", "initial conditions (operator)" ], [ "B", "boundary conditions (operator)" ], [ "Ω", "spatial or spatial-temporal domain of the system" ], [ "Θ", "space of the parameters θ" ], [ "W", "space of weights of neural networks" ], [ "L", "loss functions" ], [ "Lr", "residual loss" ], [ "Lb", "boundary condition loss" ], [ "Li", "initial condition loss" ], [ "lk", "residual (error) terms" ], [ "∥· ∥", "norm of a vector or a function" ] ]
0.881761
null
null
0
1903.07639v2
2
[ 85.03900146484375, 435.23699951171875, 505.79998779296875, 630.1060180664062 ]
\begin{table}[ht!] \caption{\textbf{Elements of a data analysis.} This table describes eight elements that are used by the data analyst to build the data analysis.} \label{table-elements} \begin{tabular}{p{3cm}|p{11cm}} \hline \textbf{Element} & \textbf{Description} \\ \hline Narrative text & Expository phrases or sentences that describe what is happening in the data analysis in a human readable format \\ \hline Code & A series of programmatic instructions to execute a particular programming or scripting language \\ \hline Code comment & Non-executable code or text near or inline with code that describes the expected action/result of the surrounding code or provides context \\ \hline Data visualization & A plot, figure or graph illustrating a visual representation of the data. \\ \hline Narrative diagram & A diagram or flowchart without data \\ \hline Summary statistics & Numerical quantities derived from the data, such as the mean, standard deviation, etc. \\ \hline Table & An ordered arrangement of data or summaries of data in rows and columns \\ \hline Statistical model or computational algorithm & Mathematical model or algorithm concerning the underlying data phenomena or data-generation process, predictive ability, or computational algorithm \\ \hline \end{tabular} \end{table}
[ [ "Element", "Description" ], [ "Narrative text", "Expository phrases or sentences that describe what is happening in the\ndata analysis in a human readable format" ], [ "Code", "A series of programmatic instructions to execute a particular program-\nming or scripting language" ], [ "Code comment", "Non-executable code or text near or inline with code that describes the\nexpected action/result of the surrounding code or provides context" ], [ "Data visualization", "A plot, figure or graph illustrating a visual representation of the data." ], [ "Narrative diagram", "A diagram or flowchart without data" ], [ "Summary statistics", "Numerical quantities derived from the data, such as the mean, standard\ndeviation, etc." ], [ "Table", "An ordered arrangement of data or summaries of data in rows and\ncolumns" ], [ "Statistical model\nor computational\nalgorithm", "Mathematical model or algorithm concerning the underlying data phe-\nnomena or data-generation process, predictive ability, or computational\nalgorithm" ] ]
0.997838
null
null
0
2103.03739v1
14
[ 374.0275390625, 134.90832010904947, 480.1824951171875, 178.17041015625 ]
\begin{table}[t!] \centering \caption{Threat prioritization depending on likelihood and impact.} \label{tab:lin:threat-table:priorities} \scalebox{0.92}{ \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline low & low & \multirow{3}{*}{low} \\ low & medium & \\ medium & low & \\ \hline \end{tabular} % \quad % \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline low & high & \multirow{3}{*}{medium}\\ medium & medium & \\ high & low & \\ \hline \end{tabular} % \quad % \begin{tabular}{|c|c|c|} \hline Likelihood & Impact & Priority \\ \hline \hline medium & high & \multirow{3}{*}{high} \\ high & medium & \\ high & high & \\ \hline \end{tabular} } \end{table}
[ [ "Likelihood", "Impact", "Priority" ], [ "medium\nhigh\nhigh", "high\nmedium\nhigh", "high" ] ]
0.47619
null
null
1
2103.03739v1
15
[ 141.84440994262695, 145.88299560546875, 473.51158142089844, 328 ]
\begin{table}[t] \centering \caption{Overview of threat prioritization. Threats that are not effective due to our assumptions are not included in the table.} \label{tab:lin:threat-table:prioritization} \begin{tabular}{ | m{.6\textwidth}<{\raggedleft} || c | c || c | } \hline \multicolumn{1}{|c||}{Threat} & Likelihood & Impact & Priority \\ \hline \hline Linkability in one or more storages & medium & medium & medium \\ \hline Identifiability in one or more storages & low & high & medium \\ \hline Detectability of data existence & medium & low & low \\ \hline Detectability in communication between different trust domains & low & low & low \\ \hline Linkability of IP addresses in communication between different trust domains & low & medium & low \\ \hline Linkability of IP addresses in communication between different trust domains leads to identifiability & low & high & medium\\ \hline Non-repudiation of encrypted data & low & low & low \\ \hline Non-repudiation of communication between different trust domains & low & low & low \\ \hline Unawareness of the data owner & low & high & medium \\ \hline Non deletion of data in cloud storage & low & low & low \\ \hline \end{tabular} \end{table}
[ [ "Threat", "Likelihood", "Impact", "Priority" ], [ "Linkability in one or more storages", "medium", "medium", "medium" ], [ "Identifiability in one or more storages", "low", "high", "medium" ], [ "Detectability of data existence", "medium", "low", "low" ], [ "Detectability in communication between different\ntrust domains", "low", "low", "low" ], [ "Linkability of IP addresses in communication\nbetween different trust domains", "low", "medium", "low" ], [ "Linkability of IP addresses in communication\nbetween different trust domains leads to\nidentifiability", "low", "high", "medium" ], [ "Non-repudiation of encrypted data", "low", "low", "low" ], [ "Non-repudiation of communication between\ndifferent trust domains", "low", "low", "low" ], [ "Unawareness of the data owner", "low", "high", "medium" ], [ "Non deletion of data in cloud storage", "low", "low", "low" ] ]
0.996426
null
null
0
2003.09758v1
11
[ 69.33112621307373, 516.2634948730469, 277.2290344238281, 581.260009765625 ]
\begin{table}[htb!] \small \centering \begin{tabular}{|c|c|c|c|c|} \hline \rowcolor[HTML]{EFEFEF} \textbf{Dataset} & \textbf{\begin{tabular}[c]{@{}c@{}}Score \\ change\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Speed \\ (x faster)\end{tabular}} & \textbf{\begin{tabular}[c]{@{}c@{}}Tables \\ removed\end{tabular}} & \textbf{$\tau$} \\ \hline Taxi & -0.04\% & 3.18 & 10 & 24 \\ \hline Pickup & -15.35\% & 3.50 & 17 & 17 \\ \hline Poverty & -1.19\% & 5.87 & 36 & 15 \\ \hline School (S) & -1\% & 1.14 & 2 & 15 \\ \hline School (L) & -5\% & 1.32 & 39 & 17 \\ \hline \end{tabular} \caption{Performance of ARDA with \textsf{RIFS} and Tuple Rule as a table filtering step for real world datasets. Hyperparameter $\tau$ was optimized for each dataset.} \label{tab:TR_RIFS_prefilter} \end{table}
[ [ "Dataset", "Score", "Speed", "Tables", "τ" ], [ null, "change", "(x faster)", "removed", null ], [ "Taxi", "-0.04%", "3.18", "10", "24" ], [ "Pickup", "-15.35%", "3.50", "17", "17" ], [ "Poverty", "-1.19%", "5.87", "36", "15" ], [ "School (S)", "-1%", "1.14", "2", "15" ], [ "School (L)", "-5%", "1.32", "39", "17" ] ]
0.493256
null
null
0
1305.2505v1
18
[ 323.3190002441406, 67.260009765625, 525.5609893798828, 117.072998046875 ]
\begin{table}[t] \centering \begin{tabular}{|c|c|} \hline Hypothesis class & Rademacher Complexity\\\hline $\B_q(\norm{\W}_q)$ & $2\norm{\X}_p\norm{\W}_q\sqrt{\frac{p - 1}{n}}$\\\hline $\B_1(\norm{\W}_1)$& $2\norm{\X}_\infty \norm{\W}_1\sqrt{\frac{e\log d}{n}}$\\\hline \end{tabular} \caption{Rademacher complexity bounds for AUC maximization. We have $1/p+1/q = 1$ and $q > 1$.} \label{tab:rad-bounds-auc} \end{table}
[ [ "Hypothesis class", "Rademacher Complexity" ], [ "( )\nBq ∥W∥q", "q\n2 p−1\n∥X∥p ∥W∥q n" ], [ "( )\nB1 ∥W∥1", "q\n2 e log d\n∥X∥ ∞∥W∥1 n" ] ]
0.47138
null
null