File size: 64,408 Bytes
175a9b7 fa70f1c 2cd825f 300113f 175a9b7 7d7cc9e fa70f1c 8559937 fa70f1c 8559937 175a9b7 954708b fa70f1c 8559937 fa70f1c 954708b fa70f1c 954708b 8559937 7d7cc9e 230105d 7d7cc9e 230105d 7d7cc9e 8559937 7d7cc9e fa70f1c 5218ddd 8559937 7d7cc9e 8559937 954708b 8559937 954708b 8559937 954708b 8559937 954708b 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 4ebbd89 8559937 4ebbd89 7254de6 8559937 4ebbd89 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 7254de6 7d7cc9e 8559937 7d7cc9e 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 954708b 8559937 175a9b7 8559937 2cd825f 175a9b7 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7d7cc9e 8559937 7254de6 7d7cc9e 8559937 954708b 8559937 7d7cc9e 8559937 7d7cc9e fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 7d7cc9e 8559937 7d7cc9e 8559937 fa70f1c 954708b fa70f1c 8559937 fa70f1c 8559937 fa70f1c 175a9b7 8559937 175a9b7 954708b 175a9b7 954708b 175a9b7 fa70f1c 954708b fa70f1c 8559937 fa70f1c 8559937 954708b 8559937 954708b 8559937 175a9b7 fa70f1c 8559937 175a9b7 8559937 175a9b7 8559937 fa70f1c 175a9b7 954708b 175a9b7 8559937 954708b 8559937 954708b 8559937 175a9b7 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 230105d fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 fa70f1c 7254de6 954708b fa70f1c 8559937 954708b fa70f1c 8559937 fa70f1c 8559937 fa70f1c 8559937 954708b 230105d 8559937 7254de6 8559937 7254de6 fa70f1c 8559937 7254de6 fa70f1c 7254de6 fa70f1c 954708b fa70f1c 954708b fa70f1c 954708b fa70f1c 954708b fa70f1c 954708b fa70f1c 175a9b7 fa70f1c fac79d6 7254de6 8559937 7254de6 8559937 fac79d6 8559937 230105d 7254de6 8559937 7254de6 8559937 7254de6 8559937 230105d 8559937 7254de6 230105d 175a9b7 230105d 8559937 230105d 8559937 230105d 4ebbd89 175a9b7 4ebbd89 8559937 4ebbd89 300113f 954708b 8559937 300113f 954708b 300113f 954708b 300113f 954708b 300113f 8559937 954708b 8559937 954708b 8559937 954708b 300113f 8559937 300113f 8559937 300113f 8559937 954708b 8559937 954708b 8559937 300113f 954708b 300113f 8559937 300113f 954708b 4ebbd89 954708b 8559937 954708b 8559937 300113f 4ebbd89 300113f 8559937 300113f 8559937 954708b 8559937 4ebbd89 8559937 300113f 8559937 300113f 8559937 954708b 300113f 4ebbd89 8559937 300113f 954708b 300113f 954708b 300113f 175a9b7 954708b 175a9b7 8559937 175a9b7 8559937 175a9b7 954708b 175a9b7 8559937 2cd825f 175a9b7 8559937 175a9b7 8559937 175a9b7 8559937 2cd825f 175a9b7 8559937 2cd825f 201fa0b 2cd825f 201fa0b 2cd825f 201fa0b 372e2fa 201fa0b 2cd825f 201fa0b 2cd825f 372e2fa 2cd825f 372e2fa 2cd825f 372e2fa 2cd825f 372e2fa 2cd825f 372e2fa 2cd825f 8559937 954708b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 |
import re
import string
import uuid
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional, Tuple
import evaluate
import numpy
import numpy as np
from scipy.stats import bootstrap
from .artifact import Artifact
from .dataclass import InternalField, OptionalField
from .logging_utils import get_logger
from .operator import (
MultiStreamOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .random_utils import get_seed
from .stream import MultiStream, Stream
from .type_utils import isoftype
logger = get_logger()
# The default number of resamples used to estimate the confidence intervals
# global and instances metrics. Use None to disable confidence interval computation by default.
_N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS = 1000
_N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS = 100
def abstract_factory():
return {}
def abstract_field():
return field(default_factory=abstract_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(Artifact):
@property
@abstractmethod
def main_score(self):
pass
class MetricWithConfidenceInterval(Metric):
# The number of resamples used to estimate the confidence intervals of this metric.
# Use None to disable confidence interval computation.
n_resamples: int = None
confidence_level: float = 0.95
ci_scores: List[str] = None
@staticmethod
def new_random_generator():
# The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
# So use '& MAX_32BIT' to get a 32-bit seed.
_max_32bit = 2**32 - 1
return np.random.default_rng(hash(get_seed()) & _max_32bit)
def disable_confidence_interval_calculation(self):
self.n_resamples = None
def _can_compute_confidence_intervals(self, num_predictions):
return (
self.n_resamples is not None
and self.n_resamples > 1
and num_predictions > 1
)
def score_based_confidence_interval(self, instances):
"""Compute confidence intervals based on existing scores, already computed on the input instances.
score_names: List[str]
Compute a confidence interval for each score_name from this list.
instances:
The instances for which the confidence intervals are computed.
"""
from statistics import mean
result = {}
if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
return result
score_names = (
self.ci_scores if self.ci_scores is not None else [self.main_score]
)
for score_name in score_names:
scores = [
instance["score"]["instance"][score_name] for instance in instances
]
ci = bootstrap(
(scores,),
statistic=mean,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=self.new_random_generator(),
).confidence_interval
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
if score_name == self.main_score:
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
return result
def compute_global_confidence_intervals(
self, references, predictions, additional_inputs, score_name
):
"""Computed confidence intervals for a set of references and predictions."""
random_gen = self.new_random_generator()
def statistic(arr, axis):
# arr is a 2d array where each row is a resampling, so we
# iterate over the rows and compute the metric on each resampling
def metric(sample_refs, sample_preds, sample_additional_inputs):
try:
return self._compute(
references=sample_refs,
predictions=sample_preds,
additional_inputs=sample_additional_inputs,
)["score"]
except Exception as e:
# this happens in edge cases, for example, when the sampling creates a
# sample where all strings are empty and this fails bleu.
logger.info(f"Warning in {self.__class__.__name__}", e)
return np.nan
scores = numpy.apply_along_axis(
lambda x: metric(
sample_refs=[references[i] for i in x],
sample_preds=[predictions[i] for i in x],
sample_additional_inputs=[additional_inputs[i] for i in x],
),
axis=axis,
arr=arr,
)
# when running with bca interval (default), the statistic is called twice: with the
# original data and with the resamples. here we want to focus only on the latter.
if scores.size > 1:
# here we deal with samples on which the metric could not be computed. These are
# edge cases - for example, when the sample contains only empty strings.
# CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
# cases in which the metric is not computable. Therefore, we ignore these edge cases
# as part of the computation of CI. The question is how to implement this policy.
# Options:
# 1. skip the errors and return a shorter array => this fails because Scipy demans
# this callback (i.e. the statistic() callback) to return an array of the same size
# as the number of resamples
# 2. Put np.nan for the errors => this fails because in such case the ci itself
# becomes np.nan. So one edge case can fail the whole CI computation.
# 3. Replace the errors with a sampling from the successful cases => this is what
# is implemented.
error_indices = numpy.isnan(scores)
n_errors = sum(error_indices)
if n_errors > 0:
new_scores = random_gen.choice(scores, n_errors, replace=True)
scores = scores[~error_indices]
scores = np.concatenate([scores, new_scores])
return scores
result = {}
num_predictions = len(predictions)
if self._can_compute_confidence_intervals(num_predictions=num_predictions):
identifiers = list(range(num_predictions))
ci = bootstrap(
(identifiers,),
statistic=statistic,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=random_gen,
).confidence_interval
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
return result
class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
"""A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.
For example, macro_F1 requires
calculation requires calculation of recall and precision per class, so all instances of the class
need to be considered. Accuracy, on the other hand, is just an average of the accuracy of all the instances.
"""
n_resamples = _N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
references = []
predictions = []
additional_inputs = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance_references, instance_prediction = (
instance["references"],
instance["prediction"],
)
references.append(instance_references)
predictions.append(instance_prediction)
instances.append(instance)
instance_additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
additional_inputs.append(instance_additional_inputs)
try:
instance_score = self._compute(
[instance_references],
[instance_prediction],
[instance_additional_inputs],
)
except:
instance_score = {"score": None, "score_name": self.main_score}
if isinstance(self.main_score, str):
instance_score[self.main_score] = None
instance["score"]["instance"].update(instance_score)
result = self._compute(references, predictions, additional_inputs)
global_score.update(result)
score_name = global_score["score_name"]
confidence_interval = self.compute_global_confidence_intervals(
references, predictions, additional_inputs, score_name
)
global_score.update(confidence_interval)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> dict:
result = self.compute(references, predictions, additional_inputs)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
pass
class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
main_score: str
reduction_map: Dict[str, List[str]]
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
# consume the stream
references, predictions = map(
list,
zip(
*[
(instance["references"], instance["prediction"])
for instance in stream
]
),
)
additional_inputs = [
instance["additional_inputs"] if "additional_inputs" in instance else {}
for instance in stream
]
# compute the metric over all refs and preds
instance_scores = self.compute(
references=references,
predictions=predictions,
additional_inputs=additional_inputs,
)
# add the score and score_name fields
for instance_score in instance_scores:
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
for instance, score in zip(stream, instance_scores):
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
global_score[field_name] = mean(
[
instance["score"]["instance"][field_name]
for instance in instances
]
)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
pass
class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
instance_score = self.compute(
references=refs, prediction=pred, additional_inputs=additional_inputs
)
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
scores = [
instance["score"]["instance"][field_name]
for instance in instances
]
global_score[field_name] = mean(scores)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self, references: List[Any], prediction: Any, additional_inputs: Dict
) -> dict:
pass
class Squad(GlobalMetric):
_metric = None
main_score = "f1"
metric = "squad"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
formatted_predictions = [
{"prediction_text": prediction, "id": ids[i]}
for i, prediction in enumerate(predictions)
]
formatted_references = [
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
for i, reference in enumerate(references)
]
return self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
)
class Accuracy(InstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
result = {
self.main_score: float(
str(prediction) in [str(reference) for reference in references]
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class StringContainment(InstanceMetric):
reduction_map = {"mean": ["string_containment"]}
main_score = "string_containment"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
result = {
self.main_score: float(
any(str(reference) in prediction for reference in references)
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
default_factory=list
)
metric: Metric = None
def verify(self):
assert self.main_score is not None, "main_score is not set"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
use_query=True,
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
return self.prepare_score(multi_stream)
class HuggingfaceMetric(GlobalMetric):
hf_metric_name: str = None
main_score: str = None # The main score returned from the metric
hf_main_score: str = (
None # USed if HF returns uses a different score name for the main metric
)
scale: float = 1.0 # optional scaling of main results
scaled_fields: list = None
# This are fixed arguments passed to compute method
hf_compute_args: Dict[str, Any] = OptionalField(default_factory=dict)
# These are additional input fields passed to HF compute method (a list with one value per instance)
hf_additional_input_fields: List = OptionalField(default_factory=list)
# These are additional input fields that are passed as one value
hf_additional_input_fields_pass_one_value: List = OptionalField(
default_factory=list
)
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
def verify(self):
assert (
self.hf_additional_input_fields is None
or isoftype(self.hf_additional_input_fields, List[str])
), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
assert (
self.hf_additional_input_fields_pass_one_value is None
or isoftype(self.hf_additional_input_fields_pass_one_value, List[str])
), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
return super().verify()
def prepare(self):
super().prepare()
self.metric = evaluate.load(
self.hf_metric_name, experiment_id=self.experiment_id
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
passed_additional_inputs = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
passed_additional_inputs[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in additional_inputs
]
for additional_input_field in self.hf_additional_input_fields_pass_one_value:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
values = {
additional_input[additional_input_field]
for additional_input in additional_inputs
}
assert (
len(values) == 1
), f"Values of '{additional_input_field}' field required by {__class__.__name__} should all be the same, but have multiple values {values}"
passed_additional_inputs[additional_input_field] = next(iter(values))
# add check that all required fields in self.metrics are in passed_additional_inputs print(passed_additional_inputs)
result = self.metric.compute(
predictions=predictions,
references=references,
**passed_additional_inputs,
**self.hf_compute_args,
)
if self.hf_main_score:
result[self.main_score] = result[self.hf_main_score]
del result[self.hf_main_score]
if self.scale != 1.0:
assert (
self.scaled_fields is not None
), f"Scaling factor was set to {self.scale}, but no fields specified"
for key in self.scaled_fields:
assert (
key in result
), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
if isinstance(result[key], list):
assert all(
isinstance(v, float) for v in result[key]
), "Not all scaled field '{key}' values are floats: {result[key]}"
result[key] = [v / self.scale for v in result[key]]
else:
assert isinstance(
result[key], float
), "Scaled field '{key}' is not float: {result[key]}"
result[key] /= self.scale
return result
class HuggingfaceBulkMetric(BulkInstanceMetric):
hf_metric_name: str
hf_metric_fields: List[str]
hf_compute_args: dict = {}
hf_additional_input_fields: List = OptionalField(default_factory=list)
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.hf_metric_name)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> List[Dict[str, Any]]:
passed_additional_inputs = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
passed_additional_inputs[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in additional_inputs
]
# add check that all required fields in self.metrics are in passed_additional_inputs
scores = self.metric.compute(
predictions=predictions,
references=references,
**passed_additional_inputs,
**self.hf_compute_args,
)
# convert dict of lists to a list of dicts
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
for key in self.hf_metric_fields:
values = scores[key]
for result_id, result in enumerate(results):
result[key] = values[result_id]
return results
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 metric"
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
self.str_to_id.keys()
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
labels=labels,
average=self.average,
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Macro(F1):
main_score = "f1_macro"
class F1Weighted(F1):
main_score = "f1_weighted"
average = "weighted"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
classes_to_ignore = ["none"]
metric = "f1"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric, "multilabel")
def add_str_to_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
additional_inputs: List[Dict],
) -> dict:
self.str_to_id = {}
self.id_to_str = {}
self._validate_references_and_prediction(references, predictions)
references = [reference[0] for reference in references]
labels = [
lbl
for lbl in {label for reference in references for label in reference}
if lbl not in self.classes_to_ignore
]
# if no classes are left then F1 is not defined
# (e.g. only "none" in references)
if len(labels) == 0:
return {self.main_score: float("nan")}
for label in labels:
self.add_str_to_id(label)
formatted_references = [
self.get_one_hot_vector(reference) for reference in references
]
formatted_predictions = [
self.get_one_hot_vector(prediction) for prediction in predictions
]
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
# to this class.
if len(labels) == 1:
labels_param = [1]
else:
labels_param = None
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
average=self.average,
labels=labels_param,
)
if isinstance(result[self.metric], numpy.ndarray):
from statistics import mean
assert (
len(result[self.metric]) == len(labels)
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
final_result = {self.main_score: mean(result[self.metric])}
for i, label in enumerate(labels):
final_result[self.metric + "_" + label] = result[self.metric][i]
else:
final_result = {self.main_score: result[self.metric]}
return final_result
def _validate_references_and_prediction(self, references, predictions):
for reference in references:
if not len(reference) == 1:
raise ValueError(
f"Only a single reference per prediction is allowed in F1 multi label metric. Received reference: {reference}"
)
if not isoftype(reference[0], List[str]):
raise ValueError(
f"Each reference is expected to be a list of strings in F1 multi label metric. Received reference: '{reference[0]}'"
)
for prediction in predictions:
if not isoftype(prediction, List[str]):
raise ValueError(
f"Each prediction is expected to be a list of strings in F1 multi label metric. Received prediction: '{prediction}'"
)
class PrecisionMacroMultiLabel(F1MultiLabel):
main_score = "precision_macro"
metric = "precision"
average = "macro"
class PrecisionMicroMultiLabel(F1MultiLabel):
main_score = "precision_micro"
metric = "precision"
average = "micro"
class RecallMacroMultiLabel(F1MultiLabel):
main_score = "recall_macro"
metric = "recall"
average = "macro"
class RecallMicroMultiLabel(F1MultiLabel):
main_score = "recall_micro"
metric = "recall"
average = "micro"
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
hf_metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
use_aggregator: bool = True
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
sent_split_newline: bool = True
def prepare(self):
super().prepare()
self.hf_compute_args.update(
{"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
)
import nltk
nltk.download("punkt")
self.sent_tokenize = nltk.sent_tokenize
def compute(self, references, predictions, additional_inputs: List[Dict]):
if self.sent_split_newline:
predictions = [
"\n".join(self.sent_tokenize(prediction.strip()))
for prediction in predictions
]
references = [
["\n".join(self.sent_tokenize(r.strip())) for r in reference]
for reference in references
]
return super().compute(references, predictions, additional_inputs)
# Computes char edit distance, ignoring whitespace
class CharEditDistanceAccuracy(InstanceMetric):
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
main_score = "char_edit_dist_accuracy"
def prepare(self):
super().prepare()
import editdistance
self.eval = editdistance.eval
def compute(
self, references, prediction: str, additional_inputs: List[Dict]
) -> dict:
assert (
len(references) == 1
), f"Expected only one reference , but received: {references}"
formatted_prediction = "".join(prediction.split())
formatted_reference = "".join(references[0].split())
max_length = max(len(formatted_reference), len(formatted_prediction))
if max_length == 0:
return {"char_edit_dist_accuracy": 0.0}
edit_dist = self.eval(formatted_reference, formatted_prediction)
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
class Wer(HuggingfaceMetric):
hf_metric_name = "wer"
main_score = "wer"
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only single reference per prediction is allowed in wer metric"
formatted_references = [reference[0] for reference in references]
result = self.metric.compute(
predictions=predictions, references=formatted_references
)
return {self.main_score: result}
class MatthewsCorrelation(HuggingfaceMetric):
hf_metric_name = "matthews_correlation"
main_score = "matthews_correlation"
str_to_id: dict = InternalField(default_factory=dict)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
return self.metric.compute(
predictions=formatted_predictions, references=formatted_references
)
class CustomF1(GlobalMetric):
main_score = "f1_micro"
groups = None
zero_division = 0.0
@abstractmethod
def get_element_group(self, element, additional_input):
pass
@abstractmethod
def get_element_representation(self, element, additional_input):
pass
def should_ignore_element(self, element, additional_input):
return False
def group_elements(self, elements_list, additional_input):
if not isinstance(elements_list, list):
elements_list = [elements_list]
return {
k: Counter(
[
self.get_element_representation(value, additional_input)
for value in elements_list
if self.get_element_group(value, additional_input) == k
]
)
for k in {
self.get_element_group(e, additional_input)
for e in elements_list
if not self.should_ignore_element(e, additional_input)
}
}
def calculate_groups_ratio(self, actual_group, total_group):
return sum(
[min(actual_group[k], total_group[k]) for k in actual_group.keys()]
), sum(actual_group.values())
def precision(self, pn, pd, rn, rd):
return self.zero_division if pn == 0 and pd == 0 else pn / pd
def recall(self, pn, pd, rn, rd):
return self.zero_division if rn == 0 and rd == 0 else rn / rd
def f1(self, pn, pd, rn, rd):
precision = self.precision(pn, pd, rn, rd)
recall = self.recall(pn, pd, rn, rd)
try:
return 2 * precision * recall / (precision + recall)
except ZeroDivisionError:
return self.zero_division
def get_groups(self, elements, additional_inputs):
groups = set()
for sublist, additional_input in zip(elements, additional_inputs):
for e in sublist:
if self.should_ignore_element(e, additional_input):
continue
groups.add(self.get_element_group(e, additional_input))
return groups
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
if (
isinstance(references[0], list)
and len(references[0]) > 0
and isinstance(references[0][0], list)
):
references = [element[0] for element in references]
assert len(references) == len(predictions), (
f"references size ({len(references)})"
f" doesn't mach predictions sise ({len(references)})."
)
if self.groups is None:
groups = self.get_groups(references, additional_inputs)
else:
groups = self.groups
groups_statistics = {}
for references_batch, predictions_batch, additional_input in zip(
references, predictions, additional_inputs
):
grouped_references = self.group_elements(references_batch, additional_input)
grouped_predictions = self.group_elements(
predictions_batch, additional_input
)
all_groups = set(grouped_references.keys()).union(
grouped_predictions.keys()
)
for group in all_groups:
if group not in groups_statistics:
groups_statistics[group] = {
"precision_numerator": 0,
"precision_denominator": 0,
"recall_numerator": 0,
"recall_denominator": 0,
}
references_by_group = grouped_references.get(group, Counter([]))
predictions_by_group = grouped_predictions.get(group, Counter([]))
pn, pd = self.calculate_groups_ratio(
actual_group=predictions_by_group, total_group=references_by_group
)
rn, rd = self.calculate_groups_ratio(
actual_group=references_by_group, total_group=predictions_by_group
)
groups_statistics[group]["precision_numerator"] += pn
groups_statistics[group]["precision_denominator"] += pd
groups_statistics[group]["recall_numerator"] += rn
groups_statistics[group]["recall_denominator"] += rd
num_of_unknown_class_predictions = 0
pn_total = pd_total = rn_total = rd_total = 0
f1_result = {}
recall_result = {}
precision_result = {}
for group in groups_statistics.keys():
pn, pd, rn, rd = (
groups_statistics[group]["precision_numerator"],
groups_statistics[group]["precision_denominator"],
groups_statistics[group]["recall_numerator"],
groups_statistics[group]["recall_denominator"],
)
pn_total, pd_total, rn_total, rd_total = (
pn_total + pn,
pd_total + pd,
rn_total + rn,
rd_total + rd,
)
if group in groups:
f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
else:
num_of_unknown_class_predictions += pd
result = f1_result
try:
result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
result["recall_macro"] = sum(recall_result.values()) / len(
recall_result.keys()
)
result["precision_macro"] = sum(precision_result.values()) / len(
precision_result.keys()
)
except ZeroDivisionError:
result["f1_macro"] = self.zero_division
result["recall_macro"] = self.zero_division
result["precision_macro"] = self.zero_division
amount_of_predictions = pd_total
if amount_of_predictions == 0:
result["in_classes_support"] = 1.0
else:
result["in_classes_support"] = (
1.0 - num_of_unknown_class_predictions / amount_of_predictions
)
result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
result["precision_micro"] = self.precision(
pn_total, pd_total, rn_total, rd_total
)
return result
class NER(CustomF1):
def get_element_group(self, element, additional_input):
return element[1]
def get_element_representation(self, element, additional_input):
return str(element)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
class TokenOverlap(InstanceMetric):
reduction_map = {"mean": ["f1", "precision", "recall"]}
main_score = "f1"
ci_scores = ["f1", "precision", "recall"]
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
results = [
self._compute_single_ref(reference, prediction) for reference in references
]
return {
measure: max(r[i] for r in results)
for i, measure in enumerate(["precision", "recall", "f1"])
}
def _compute_single_ref(
self, reference: Any, prediction: Any
) -> Tuple[float, float, float]:
prediction_tokens = normalize_answer(prediction).split()
reference_tokens = normalize_answer(reference).split()
common = Counter(prediction_tokens) & Counter(reference_tokens)
num_same = sum(common.values())
if num_same == 0:
pr, rc, f1 = 0, 0, 0
else:
pr = 1.0 * num_same / len(prediction_tokens)
rc = 1.0 * num_same / len(reference_tokens)
f1 = (2 * pr * rc) / (pr + rc)
return pr, rc, f1
class BertScore(HuggingfaceBulkMetric):
hf_metric_name = "bertscore"
main_score = "f1"
reduction_map = {"mean": ["f1", "precision", "recall"]}
hf_metric_fields = ["f1", "precision", "recall"]
ci_scores = ["f1", "precision", "recall"]
model_name: str
def prepare(self):
super().prepare()
self.hf_compute_args = {"model_type": self.model_name}
class SentenceBert(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from sentence_transformers import SentenceTransformer
from sentence_transformers import util as sbert_util
self.model = SentenceTransformer(self.model_name)
self.util = sbert_util
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
scores = []
# we are in a multi-reference case (each prediction may have multiple
# references), so we need to flatten the refs in order to compute the
# embeddings in one batch, but first we have to store the spans of
# reference groups, so we can recover it later on.
ref_group_boundaries = []
count = 0
for ref_group in references:
ref_group_boundaries.append((count, count + len(ref_group)))
count += len(ref_group)
# compute s-bert embeddings
preds_emb = self.model.encode(predictions)
refs_emb = self.model.encode(
[ref for ref_group in references for ref in ref_group]
)
# for each candidate, pick the reference with the highest score
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
refs_group_emb = refs_emb[ref_group_bounds[0] : ref_group_bounds[1]]
scores.append(self.util.cos_sim(pred_emb, refs_group_emb).max().item())
return [{"score": score} for score in scores]
class Reward(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from transformers import pipeline
self.pipe = pipeline("text-classification", model=self.model_name)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
# treat the references as the questions and the predictions as answers
# assume a single reference
questions = [refs[0] for refs in references]
answers = predictions
# prepare for computation
inputs = [{"text": q, "text_pair": a} for q, a in zip(questions, answers)]
# compute the metric
# add function_to_apply="none" to disable sigmoid
return self.pipe(inputs, batch_size=self.batch_size)
class Perplexity(BulkInstanceMetric):
"""Computes the likelihood of generating text Y after text X - P(Y|X)."""
main_score = "perplexity"
reduction_map = {"mean": ["perplexity"]}
perplexity_prompt: str
batch_size: int = 32
model_name: str
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
"""Computes the likelihood of generating text Y after text X - P(Y|X).
:param references: the list of Y texts as a list of singletons.
:param predictions: the list of X texts as a plain list of strings
:return: the likelihood of generating text Y_i after text X_i = P(Y_i|X_i) for every i.
"""
sources = []
targets = []
for prediction, instance_references in zip(predictions, references):
for instance_reference in instance_references:
sources.append(f"{self.perplexity_prompt} {prediction}")
targets.append(instance_reference)
from transformers import AutoConfig
config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
lm = (
self.EncoderDecoderLM(model_name=self.model_name)
if config.is_encoder_decoder is True
else self.DecoderOnlyLM(model_name=self.model_name)
)
# compute P(Q|P) and store in queue
scores = lm.compute_lm(
source=sources, target=targets, batch_size=self.batch_size
)
index = 0
all_instances_scores = []
for instance_references in references:
instance_scores = {}
instance_scores_list = []
for _ in range(len(instance_references)):
instance_scores_list.append(scores[index])
index += 1
instance_scores["reference_scores"] = instance_scores_list
# max seems more useful than mean for common use cases like
# context relevance, where what we want to know is if there
# is at least one good result in the context. Using mean will
# bring the score down due to bad contexts at the tail.
instance_scores[self.main_score] = max(instance_scores_list)
all_instances_scores.append(instance_scores)
return all_instances_scores
class AbstractLM(ABC):
def __init__(self, model_name):
import torch
from transformers import AutoTokenizer
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = self.model_class().from_pretrained(self.model_name)
self.is_cuda = torch.cuda.is_available()
def compute_lm(
self, source: List[str], target: List[str], batch_size: int
) -> List[float]:
import torch
scores = []
with torch.no_grad():
# break the documents to batches
n_batches = int(len(source) / batch_size)
batch_range = range(n_batches + 1)
for batch in batch_range:
batch_source = source[batch * batch_size : (batch + 1) * batch_size]
batch_target = target[batch * batch_size : (batch + 1) * batch_size]
if len(batch_source) > 0:
# tokenize the source and target
tokens_source = self.tokenizer(
batch_source, padding=True, return_tensors="pt"
)
tokens_target = self.tokenizer(
batch_target, padding=True, return_tensors="pt"
)
# compute the logits
logits, labels = self.compute_batch(
tokens_source, tokens_target
)
# logits is a tensor of size: batch_size * len(target) * vocab_size
# because for each example in the batch, the model predicted the
# logit at every position in the target, for every vocab item.
# the model returns mean over all batch. We run the CE again without reduction
# and extract the mean for each document
loss_fct = torch.nn.CrossEntropyLoss(
ignore_index=-100, reduction="none"
)
# logits.size(-1) = the dimension of the vocabulary
# labels.view(-1) = flattens the labels tensor to 1d
loss = loss_fct(
logits.view(-1, logits.size(-1)), labels.view(-1)
)
loss = loss.view(len(batch_source), -1)
# for each document, do mean only over the non zero values (sum(labels>0))
batch_loss = torch.sum(loss, dim=1) / torch.sum(
labels > 0, dim=1
)
# e^-average(cross-entropy-loss(logits) == geometric mean of the probabilities
# proof:
# * CE-loss of logits is computed by transforming the logits to
# probabilities by softmax, and then -log(p) is returned, where
# p is the probability of the gold label.
# * Averaging the CE loss is computed by summing over -log(p) and
# then dividing by the length of the gold labels.
# * Thus, pr_score = (-log(p_1) + ... + -log(p_n)) / n
# = -log(p_1 * ... * p_n) * 1/n
# * Therefore,
# e^(-pr_score) = e^(log(p_1 * ... * p_n) * 1/n)
# = (e^(log(p_1 * ... * p_n))) ^ 1/n
# = p_1 * ... * p_n) ^ 1/n
# = geometric mean of [p_1, ..., p_n]
#
# in principle we could have computed the geometric mean directly over the
# probabilities instead of e^(average cross entropy loss of the logits),
# but the current approach is more stable numerically. See for example:
# https://stackoverflow.com/questions/59722983/how-to-calculate-geometric-mean-in-a-differentiable-way
geometric_mean = (-batch_loss).exp()
# append the batch scores to the list of all scores
scores.append(geometric_mean)
return torch.cat(scores, dim=0).tolist()
@abstractmethod
def model_class(self):
pass
@abstractmethod
def compute_batch(self, tokens_source, tokens_target):
pass
class EncoderDecoderLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForSeq2SeqLM
return AutoModelForSeq2SeqLM
def compute_batch(self, tokens_source, tokens_target):
tokens_docs_ids = tokens_source["input_ids"]
attention = tokens_source["attention_mask"]
labels = tokens_target["input_ids"]
if self.is_cuda:
tokens_docs_ids, attention, labels = (
tokens_docs_ids.cuda(),
attention.cuda(),
labels.cuda(),
)
logits = self.model(
input_ids=tokens_docs_ids.long(),
attention_mask=attention.long(),
labels=labels.long(),
).logits
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
return logits, labels
class DecoderOnlyLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM
def compute_batch(self, tokens_source, tokens_target):
import torch
tokens = torch.cat(
[tokens_source["input_ids"], tokens_target["input_ids"]], dim=1
)
attention = torch.cat(
[tokens_source["attention_mask"], tokens_target["attention_mask"]],
dim=1,
)
labels = torch.cat(
[
torch.zeros_like(tokens_source["input_ids"]).fill_(-100),
tokens_target["input_ids"],
],
dim=1,
)
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
if self.is_cuda:
tokens, attention, labels = (
tokens.cuda(),
attention.cuda(),
labels.cuda(),
)
# no need to pass labels as we calculate the loss below per document
model_output = self.model(
input_ids=tokens.long(), attention_mask=attention.long()
)
logits = model_output.logits
# in decoder only, the first token is not being generated, it is taken from the input,
# so the model is generating from token 2 to n+1. therefore, we need to skip the last
# logit and the first label.
shifted_logits = logits[..., :-1, :].contiguous()
shifted_labels = labels[..., 1:].contiguous()
return shifted_logits, shifted_labels
class NDCG(GlobalMetric):
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
common use case where the instances are grouped by different queries, i.e., where the task is to provide a
relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
"query" input field of an instance) and the final score is the average across all queries.
Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
the same nDCG score w.r.t. a given set of reference scores.
See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
"""
main_score = "nDCG"
def prepare(self):
from sklearn.metrics import ndcg_score
super().prepare()
self.eval = ndcg_score
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
from collections import defaultdict
from statistics import mean
query_to_predictions_and_references = defaultdict(lambda: [[], []])
for reference, pred, inputs_dict in zip(
references, predictions, additional_inputs
):
query = inputs_dict.get("query")
query_to_predictions_and_references[query][0].append(pred)
query_to_predictions_and_references[query][1].append(reference)
scores = []
for q_predictions, q_references in query_to_predictions_and_references.values():
if len(q_references) == 1:
continue
if (
None in q_predictions
): # model failed to predict numeric scores for some instances
numeric_predictions = [
pred for pred in q_predictions if pred is not None
]
if len(numeric_predictions) <= 1: # no meaningful ranking
scores.append(0)
continue
# consider non-numeric model predictions as ranked last
min_value = min(numeric_predictions)
q_predictions = [
1 + (pred - min_value) if pred is not None else 0
for pred in q_predictions
]
scores.append(self.eval([q_references], [q_predictions]))
return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}
class RetrievalMetric(InstanceMetric):
def compute(
self, references: List[Any], prediction: Any, additional_inputs: Dict
) -> dict:
# digest input
pred_ids: List[Any] = prediction
ref_ids: List[Any] = list(dict.fromkeys(references))
# relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
# the doc id retrieved at position k (assuming it is 1-based, so k starts
# from 1) is in the gold doc ids or not.
# For example, assuming that in the retrieved docs we have correct predictions
# at positions 2, 4 and 5 (1-based), the dict will look like:
# {1: 0, 2: 1, 3: 0, 4: 1, 5: 1, ...}
relevance_at_k = {
k + 1: 1 if doc_id in ref_ids else 0 for k, doc_id in enumerate(pred_ids)
}
# relevance_sum_at_k: 1-based dictionary of counts, where the value at k determines
# how many gold doc ids have been observed up to index k.
relevance_sum_at_k = {}
for k, value in relevance_at_k.items():
relevance_sum_at_k[k] = relevance_sum_at_k.get(k - 1, 0) + value
# precision_at_k: the precision of the top k retrieved documents. For example,
# assuming that only 1 out of the first 4 retrieved documents is correct, the
# value at 4 will be 1/4.
precision_at_k = {k: value / k for k, value in relevance_sum_at_k.items()}
# recall_at_k: the recall of the top k retrieved documents. For example,
# assuming that only 2 out of the 3 gold documents are in the top 5 results,
# the value at 5 will be 2/3.
n_refs = len(ref_ids)
recall_at_k = {
k: value / n_refs if n_refs > 0 else 0
for k, value in relevance_sum_at_k.items()
}
# rank - the 1-based index of the first hit of a gold doc id. So 1
# means first position.
rank = 0
for k, relevance in relevance_at_k.items():
if relevance == 1:
rank = k
break
# match_at_k: whether we have a match at the top k retrieved documents
match_at_k = {
k: 1.0 if value > 0 else 0.0 for k, value in relevance_sum_at_k.items()
}
return self._compute(
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
)
@abstractmethod
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
pass
class MRR(RetrievalMetric):
reduction_map = {"mean": ["mrr"]}
main_score = "mrr"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
return {self.main_score: 1 / rank if rank > 0 else 0}
class MAP(RetrievalMetric):
reduction_map = {"mean": ["map"]}
main_score = "map"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = 0
if len(relevance_at_k) > 0:
total = sum(relevance_at_k.values())
if total > 0:
dot = sum(relevance_at_k[k] * precision_at_k[k] for k in relevance_at_k)
result = dot / total
return {self.main_score: result}
class RetrievalAtK(RetrievalMetric):
k_list: List[int]
main_score: str = None
reduction_map: Dict[str, List[str]] = None
def prepare(self):
super().prepare()
self.main_score = self.score_name("match", self.k_list[0])
self.ci_scores = [
self.score_name(measure, k)
for measure in ["precision", "recall", "match"]
for k in self.k_list
]
self.reduction_map = {"mean": self.ci_scores}
@staticmethod
def score_name(measure: str, k: int):
return f"{measure}_at_{k}"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = {}
for measure_array, measure_name in [
(precision_at_k, "precision"),
(recall_at_k, "recall"),
(match_at_k, "match"),
]:
max_k = max(measure_array.keys())
for k in self.k_list:
result[self.score_name(measure_name, k)] = measure_array[min(k, max_k)]
return result
class KPA(CustomF1):
def get_element_group(self, element, additional_input):
return additional_input["keypoint"]
def get_element_representation(self, element, additional_input):
return additional_input["keypoint"]
def should_ignore_element(self, element, additional_input):
return element == "none"
|