Datasets:

ArXiv:
data / metrics.py
Elron's picture
Upload metrics.py with huggingface_hub
372e2fa verified
raw
history blame
64.4 kB
import re
import string
import uuid
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional, Tuple
import evaluate
import numpy
import numpy as np
from scipy.stats import bootstrap
from .artifact import Artifact
from .dataclass import InternalField, OptionalField
from .logging_utils import get_logger
from .operator import (
MultiStreamOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .random_utils import get_seed
from .stream import MultiStream, Stream
from .type_utils import isoftype
logger = get_logger()
# The default number of resamples used to estimate the confidence intervals
# global and instances metrics. Use None to disable confidence interval computation by default.
_N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS = 1000
_N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS = 100
def abstract_factory():
return {}
def abstract_field():
return field(default_factory=abstract_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(Artifact):
@property
@abstractmethod
def main_score(self):
pass
class MetricWithConfidenceInterval(Metric):
# The number of resamples used to estimate the confidence intervals of this metric.
# Use None to disable confidence interval computation.
n_resamples: int = None
confidence_level: float = 0.95
ci_scores: List[str] = None
@staticmethod
def new_random_generator():
# The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
# So use '& MAX_32BIT' to get a 32-bit seed.
_max_32bit = 2**32 - 1
return np.random.default_rng(hash(get_seed()) & _max_32bit)
def disable_confidence_interval_calculation(self):
self.n_resamples = None
def _can_compute_confidence_intervals(self, num_predictions):
return (
self.n_resamples is not None
and self.n_resamples > 1
and num_predictions > 1
)
def score_based_confidence_interval(self, instances):
"""Compute confidence intervals based on existing scores, already computed on the input instances.
score_names: List[str]
Compute a confidence interval for each score_name from this list.
instances:
The instances for which the confidence intervals are computed.
"""
from statistics import mean
result = {}
if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
return result
score_names = (
self.ci_scores if self.ci_scores is not None else [self.main_score]
)
for score_name in score_names:
scores = [
instance["score"]["instance"][score_name] for instance in instances
]
ci = bootstrap(
(scores,),
statistic=mean,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=self.new_random_generator(),
).confidence_interval
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
if score_name == self.main_score:
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
return result
def compute_global_confidence_intervals(
self, references, predictions, additional_inputs, score_name
):
"""Computed confidence intervals for a set of references and predictions."""
random_gen = self.new_random_generator()
def statistic(arr, axis):
# arr is a 2d array where each row is a resampling, so we
# iterate over the rows and compute the metric on each resampling
def metric(sample_refs, sample_preds, sample_additional_inputs):
try:
return self._compute(
references=sample_refs,
predictions=sample_preds,
additional_inputs=sample_additional_inputs,
)["score"]
except Exception as e:
# this happens in edge cases, for example, when the sampling creates a
# sample where all strings are empty and this fails bleu.
logger.info(f"Warning in {self.__class__.__name__}", e)
return np.nan
scores = numpy.apply_along_axis(
lambda x: metric(
sample_refs=[references[i] for i in x],
sample_preds=[predictions[i] for i in x],
sample_additional_inputs=[additional_inputs[i] for i in x],
),
axis=axis,
arr=arr,
)
# when running with bca interval (default), the statistic is called twice: with the
# original data and with the resamples. here we want to focus only on the latter.
if scores.size > 1:
# here we deal with samples on which the metric could not be computed. These are
# edge cases - for example, when the sample contains only empty strings.
# CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
# cases in which the metric is not computable. Therefore, we ignore these edge cases
# as part of the computation of CI. The question is how to implement this policy.
# Options:
# 1. skip the errors and return a shorter array => this fails because Scipy demans
# this callback (i.e. the statistic() callback) to return an array of the same size
# as the number of resamples
# 2. Put np.nan for the errors => this fails because in such case the ci itself
# becomes np.nan. So one edge case can fail the whole CI computation.
# 3. Replace the errors with a sampling from the successful cases => this is what
# is implemented.
error_indices = numpy.isnan(scores)
n_errors = sum(error_indices)
if n_errors > 0:
new_scores = random_gen.choice(scores, n_errors, replace=True)
scores = scores[~error_indices]
scores = np.concatenate([scores, new_scores])
return scores
result = {}
num_predictions = len(predictions)
if self._can_compute_confidence_intervals(num_predictions=num_predictions):
identifiers = list(range(num_predictions))
ci = bootstrap(
(identifiers,),
statistic=statistic,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=random_gen,
).confidence_interval
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
return result
class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
"""A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.
For example, macro_F1 requires
calculation requires calculation of recall and precision per class, so all instances of the class
need to be considered. Accuracy, on the other hand, is just an average of the accuracy of all the instances.
"""
n_resamples = _N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
references = []
predictions = []
additional_inputs = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance_references, instance_prediction = (
instance["references"],
instance["prediction"],
)
references.append(instance_references)
predictions.append(instance_prediction)
instances.append(instance)
instance_additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
additional_inputs.append(instance_additional_inputs)
try:
instance_score = self._compute(
[instance_references],
[instance_prediction],
[instance_additional_inputs],
)
except:
instance_score = {"score": None, "score_name": self.main_score}
if isinstance(self.main_score, str):
instance_score[self.main_score] = None
instance["score"]["instance"].update(instance_score)
result = self._compute(references, predictions, additional_inputs)
global_score.update(result)
score_name = global_score["score_name"]
confidence_interval = self.compute_global_confidence_intervals(
references, predictions, additional_inputs, score_name
)
global_score.update(confidence_interval)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> dict:
result = self.compute(references, predictions, additional_inputs)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
pass
class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
main_score: str
reduction_map: Dict[str, List[str]]
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
# consume the stream
references, predictions = map(
list,
zip(
*[
(instance["references"], instance["prediction"])
for instance in stream
]
),
)
additional_inputs = [
instance["additional_inputs"] if "additional_inputs" in instance else {}
for instance in stream
]
# compute the metric over all refs and preds
instance_scores = self.compute(
references=references,
predictions=predictions,
additional_inputs=additional_inputs,
)
# add the score and score_name fields
for instance_score in instance_scores:
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
for instance, score in zip(stream, instance_scores):
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
global_score[field_name] = mean(
[
instance["score"]["instance"][field_name]
for instance in instances
]
)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
pass
class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
additional_inputs = (
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
instance_score = self.compute(
references=refs, prediction=pred, additional_inputs=additional_inputs
)
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field_name in fields:
scores = [
instance["score"]["instance"][field_name]
for instance in instances
]
global_score[field_name] = mean(scores)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
confidence_interval = self.score_based_confidence_interval(
instances=instances
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self, references: List[Any], prediction: Any, additional_inputs: Dict
) -> dict:
pass
class Squad(GlobalMetric):
_metric = None
main_score = "f1"
metric = "squad"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
formatted_predictions = [
{"prediction_text": prediction, "id": ids[i]}
for i, prediction in enumerate(predictions)
]
formatted_references = [
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
for i, reference in enumerate(references)
]
return self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
)
class Accuracy(InstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
result = {
self.main_score: float(
str(prediction) in [str(reference) for reference in references]
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class StringContainment(InstanceMetric):
reduction_map = {"mean": ["string_containment"]}
main_score = "string_containment"
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
result = {
self.main_score: float(
any(str(reference) in prediction for reference in references)
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
default_factory=list
)
metric: Metric = None
def verify(self):
assert self.main_score is not None, "main_score is not set"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
use_query=True,
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
return self.prepare_score(multi_stream)
class HuggingfaceMetric(GlobalMetric):
hf_metric_name: str = None
main_score: str = None # The main score returned from the metric
hf_main_score: str = (
None # USed if HF returns uses a different score name for the main metric
)
scale: float = 1.0 # optional scaling of main results
scaled_fields: list = None
# This are fixed arguments passed to compute method
hf_compute_args: Dict[str, Any] = OptionalField(default_factory=dict)
# These are additional input fields passed to HF compute method (a list with one value per instance)
hf_additional_input_fields: List = OptionalField(default_factory=list)
# These are additional input fields that are passed as one value
hf_additional_input_fields_pass_one_value: List = OptionalField(
default_factory=list
)
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
def verify(self):
assert (
self.hf_additional_input_fields is None
or isoftype(self.hf_additional_input_fields, List[str])
), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
assert (
self.hf_additional_input_fields_pass_one_value is None
or isoftype(self.hf_additional_input_fields_pass_one_value, List[str])
), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
return super().verify()
def prepare(self):
super().prepare()
self.metric = evaluate.load(
self.hf_metric_name, experiment_id=self.experiment_id
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
passed_additional_inputs = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
passed_additional_inputs[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in additional_inputs
]
for additional_input_field in self.hf_additional_input_fields_pass_one_value:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
values = {
additional_input[additional_input_field]
for additional_input in additional_inputs
}
assert (
len(values) == 1
), f"Values of '{additional_input_field}' field required by {__class__.__name__} should all be the same, but have multiple values {values}"
passed_additional_inputs[additional_input_field] = next(iter(values))
# add check that all required fields in self.metrics are in passed_additional_inputs print(passed_additional_inputs)
result = self.metric.compute(
predictions=predictions,
references=references,
**passed_additional_inputs,
**self.hf_compute_args,
)
if self.hf_main_score:
result[self.main_score] = result[self.hf_main_score]
del result[self.hf_main_score]
if self.scale != 1.0:
assert (
self.scaled_fields is not None
), f"Scaling factor was set to {self.scale}, but no fields specified"
for key in self.scaled_fields:
assert (
key in result
), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
if isinstance(result[key], list):
assert all(
isinstance(v, float) for v in result[key]
), "Not all scaled field '{key}' values are floats: {result[key]}"
result[key] = [v / self.scale for v in result[key]]
else:
assert isinstance(
result[key], float
), "Scaled field '{key}' is not float: {result[key]}"
result[key] /= self.scale
return result
class HuggingfaceBulkMetric(BulkInstanceMetric):
hf_metric_name: str
hf_metric_fields: List[str]
hf_compute_args: dict = {}
hf_additional_input_fields: List = OptionalField(default_factory=list)
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.hf_metric_name)
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Any],
) -> List[Dict[str, Any]]:
passed_additional_inputs = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in additional_inputs[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
passed_additional_inputs[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in additional_inputs
]
# add check that all required fields in self.metrics are in passed_additional_inputs
scores = self.metric.compute(
predictions=predictions,
references=references,
**passed_additional_inputs,
**self.hf_compute_args,
)
# convert dict of lists to a list of dicts
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
for key in self.hf_metric_fields:
values = scores[key]
for result_id, result in enumerate(results):
result[key] = values[result_id]
return results
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 metric"
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
self.str_to_id.keys()
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
labels=labels,
average=self.average,
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Macro(F1):
main_score = "f1_macro"
class F1Weighted(F1):
main_score = "f1_weighted"
average = "weighted"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
classes_to_ignore = ["none"]
metric = "f1"
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric, "multilabel")
def add_str_to_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
additional_inputs: List[Dict],
) -> dict:
self.str_to_id = {}
self.id_to_str = {}
self._validate_references_and_prediction(references, predictions)
references = [reference[0] for reference in references]
labels = [
lbl
for lbl in {label for reference in references for label in reference}
if lbl not in self.classes_to_ignore
]
# if no classes are left then F1 is not defined
# (e.g. only "none" in references)
if len(labels) == 0:
return {self.main_score: float("nan")}
for label in labels:
self.add_str_to_id(label)
formatted_references = [
self.get_one_hot_vector(reference) for reference in references
]
formatted_predictions = [
self.get_one_hot_vector(prediction) for prediction in predictions
]
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
# to this class.
if len(labels) == 1:
labels_param = [1]
else:
labels_param = None
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
average=self.average,
labels=labels_param,
)
if isinstance(result[self.metric], numpy.ndarray):
from statistics import mean
assert (
len(result[self.metric]) == len(labels)
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
final_result = {self.main_score: mean(result[self.metric])}
for i, label in enumerate(labels):
final_result[self.metric + "_" + label] = result[self.metric][i]
else:
final_result = {self.main_score: result[self.metric]}
return final_result
def _validate_references_and_prediction(self, references, predictions):
for reference in references:
if not len(reference) == 1:
raise ValueError(
f"Only a single reference per prediction is allowed in F1 multi label metric. Received reference: {reference}"
)
if not isoftype(reference[0], List[str]):
raise ValueError(
f"Each reference is expected to be a list of strings in F1 multi label metric. Received reference: '{reference[0]}'"
)
for prediction in predictions:
if not isoftype(prediction, List[str]):
raise ValueError(
f"Each prediction is expected to be a list of strings in F1 multi label metric. Received prediction: '{prediction}'"
)
class PrecisionMacroMultiLabel(F1MultiLabel):
main_score = "precision_macro"
metric = "precision"
average = "macro"
class PrecisionMicroMultiLabel(F1MultiLabel):
main_score = "precision_micro"
metric = "precision"
average = "micro"
class RecallMacroMultiLabel(F1MultiLabel):
main_score = "recall_macro"
metric = "recall"
average = "macro"
class RecallMicroMultiLabel(F1MultiLabel):
main_score = "recall_micro"
metric = "recall"
average = "micro"
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
hf_metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
use_aggregator: bool = True
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
sent_split_newline: bool = True
def prepare(self):
super().prepare()
self.hf_compute_args.update(
{"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
)
import nltk
nltk.download("punkt")
self.sent_tokenize = nltk.sent_tokenize
def compute(self, references, predictions, additional_inputs: List[Dict]):
if self.sent_split_newline:
predictions = [
"\n".join(self.sent_tokenize(prediction.strip()))
for prediction in predictions
]
references = [
["\n".join(self.sent_tokenize(r.strip())) for r in reference]
for reference in references
]
return super().compute(references, predictions, additional_inputs)
# Computes char edit distance, ignoring whitespace
class CharEditDistanceAccuracy(InstanceMetric):
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
main_score = "char_edit_dist_accuracy"
def prepare(self):
super().prepare()
import editdistance
self.eval = editdistance.eval
def compute(
self, references, prediction: str, additional_inputs: List[Dict]
) -> dict:
assert (
len(references) == 1
), f"Expected only one reference , but received: {references}"
formatted_prediction = "".join(prediction.split())
formatted_reference = "".join(references[0].split())
max_length = max(len(formatted_reference), len(formatted_prediction))
if max_length == 0:
return {"char_edit_dist_accuracy": 0.0}
edit_dist = self.eval(formatted_reference, formatted_prediction)
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
class Wer(HuggingfaceMetric):
hf_metric_name = "wer"
main_score = "wer"
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only single reference per prediction is allowed in wer metric"
formatted_references = [reference[0] for reference in references]
result = self.metric.compute(
predictions=predictions, references=formatted_references
)
return {self.main_score: result}
class MatthewsCorrelation(HuggingfaceMetric):
hf_metric_name = "matthews_correlation"
main_score = "matthews_correlation"
str_to_id: dict = InternalField(default_factory=dict)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
additional_inputs: List[Dict],
) -> dict:
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
return self.metric.compute(
predictions=formatted_predictions, references=formatted_references
)
class CustomF1(GlobalMetric):
main_score = "f1_micro"
groups = None
zero_division = 0.0
@abstractmethod
def get_element_group(self, element, additional_input):
pass
@abstractmethod
def get_element_representation(self, element, additional_input):
pass
def should_ignore_element(self, element, additional_input):
return False
def group_elements(self, elements_list, additional_input):
if not isinstance(elements_list, list):
elements_list = [elements_list]
return {
k: Counter(
[
self.get_element_representation(value, additional_input)
for value in elements_list
if self.get_element_group(value, additional_input) == k
]
)
for k in {
self.get_element_group(e, additional_input)
for e in elements_list
if not self.should_ignore_element(e, additional_input)
}
}
def calculate_groups_ratio(self, actual_group, total_group):
return sum(
[min(actual_group[k], total_group[k]) for k in actual_group.keys()]
), sum(actual_group.values())
def precision(self, pn, pd, rn, rd):
return self.zero_division if pn == 0 and pd == 0 else pn / pd
def recall(self, pn, pd, rn, rd):
return self.zero_division if rn == 0 and rd == 0 else rn / rd
def f1(self, pn, pd, rn, rd):
precision = self.precision(pn, pd, rn, rd)
recall = self.recall(pn, pd, rn, rd)
try:
return 2 * precision * recall / (precision + recall)
except ZeroDivisionError:
return self.zero_division
def get_groups(self, elements, additional_inputs):
groups = set()
for sublist, additional_input in zip(elements, additional_inputs):
for e in sublist:
if self.should_ignore_element(e, additional_input):
continue
groups.add(self.get_element_group(e, additional_input))
return groups
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> dict:
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
if (
isinstance(references[0], list)
and len(references[0]) > 0
and isinstance(references[0][0], list)
):
references = [element[0] for element in references]
assert len(references) == len(predictions), (
f"references size ({len(references)})"
f" doesn't mach predictions sise ({len(references)})."
)
if self.groups is None:
groups = self.get_groups(references, additional_inputs)
else:
groups = self.groups
groups_statistics = {}
for references_batch, predictions_batch, additional_input in zip(
references, predictions, additional_inputs
):
grouped_references = self.group_elements(references_batch, additional_input)
grouped_predictions = self.group_elements(
predictions_batch, additional_input
)
all_groups = set(grouped_references.keys()).union(
grouped_predictions.keys()
)
for group in all_groups:
if group not in groups_statistics:
groups_statistics[group] = {
"precision_numerator": 0,
"precision_denominator": 0,
"recall_numerator": 0,
"recall_denominator": 0,
}
references_by_group = grouped_references.get(group, Counter([]))
predictions_by_group = grouped_predictions.get(group, Counter([]))
pn, pd = self.calculate_groups_ratio(
actual_group=predictions_by_group, total_group=references_by_group
)
rn, rd = self.calculate_groups_ratio(
actual_group=references_by_group, total_group=predictions_by_group
)
groups_statistics[group]["precision_numerator"] += pn
groups_statistics[group]["precision_denominator"] += pd
groups_statistics[group]["recall_numerator"] += rn
groups_statistics[group]["recall_denominator"] += rd
num_of_unknown_class_predictions = 0
pn_total = pd_total = rn_total = rd_total = 0
f1_result = {}
recall_result = {}
precision_result = {}
for group in groups_statistics.keys():
pn, pd, rn, rd = (
groups_statistics[group]["precision_numerator"],
groups_statistics[group]["precision_denominator"],
groups_statistics[group]["recall_numerator"],
groups_statistics[group]["recall_denominator"],
)
pn_total, pd_total, rn_total, rd_total = (
pn_total + pn,
pd_total + pd,
rn_total + rn,
rd_total + rd,
)
if group in groups:
f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
else:
num_of_unknown_class_predictions += pd
result = f1_result
try:
result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
result["recall_macro"] = sum(recall_result.values()) / len(
recall_result.keys()
)
result["precision_macro"] = sum(precision_result.values()) / len(
precision_result.keys()
)
except ZeroDivisionError:
result["f1_macro"] = self.zero_division
result["recall_macro"] = self.zero_division
result["precision_macro"] = self.zero_division
amount_of_predictions = pd_total
if amount_of_predictions == 0:
result["in_classes_support"] = 1.0
else:
result["in_classes_support"] = (
1.0 - num_of_unknown_class_predictions / amount_of_predictions
)
result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
result["precision_micro"] = self.precision(
pn_total, pd_total, rn_total, rd_total
)
return result
class NER(CustomF1):
def get_element_group(self, element, additional_input):
return element[1]
def get_element_representation(self, element, additional_input):
return str(element)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
class TokenOverlap(InstanceMetric):
reduction_map = {"mean": ["f1", "precision", "recall"]}
main_score = "f1"
ci_scores = ["f1", "precision", "recall"]
def compute(
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
) -> dict:
results = [
self._compute_single_ref(reference, prediction) for reference in references
]
return {
measure: max(r[i] for r in results)
for i, measure in enumerate(["precision", "recall", "f1"])
}
def _compute_single_ref(
self, reference: Any, prediction: Any
) -> Tuple[float, float, float]:
prediction_tokens = normalize_answer(prediction).split()
reference_tokens = normalize_answer(reference).split()
common = Counter(prediction_tokens) & Counter(reference_tokens)
num_same = sum(common.values())
if num_same == 0:
pr, rc, f1 = 0, 0, 0
else:
pr = 1.0 * num_same / len(prediction_tokens)
rc = 1.0 * num_same / len(reference_tokens)
f1 = (2 * pr * rc) / (pr + rc)
return pr, rc, f1
class BertScore(HuggingfaceBulkMetric):
hf_metric_name = "bertscore"
main_score = "f1"
reduction_map = {"mean": ["f1", "precision", "recall"]}
hf_metric_fields = ["f1", "precision", "recall"]
ci_scores = ["f1", "precision", "recall"]
model_name: str
def prepare(self):
super().prepare()
self.hf_compute_args = {"model_type": self.model_name}
class SentenceBert(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from sentence_transformers import SentenceTransformer
from sentence_transformers import util as sbert_util
self.model = SentenceTransformer(self.model_name)
self.util = sbert_util
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
scores = []
# we are in a multi-reference case (each prediction may have multiple
# references), so we need to flatten the refs in order to compute the
# embeddings in one batch, but first we have to store the spans of
# reference groups, so we can recover it later on.
ref_group_boundaries = []
count = 0
for ref_group in references:
ref_group_boundaries.append((count, count + len(ref_group)))
count += len(ref_group)
# compute s-bert embeddings
preds_emb = self.model.encode(predictions)
refs_emb = self.model.encode(
[ref for ref_group in references for ref in ref_group]
)
# for each candidate, pick the reference with the highest score
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
refs_group_emb = refs_emb[ref_group_bounds[0] : ref_group_bounds[1]]
scores.append(self.util.cos_sim(pred_emb, refs_group_emb).max().item())
return [{"score": score} for score in scores]
class Reward(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
def prepare(self):
super().prepare()
from transformers import pipeline
self.pipe = pipeline("text-classification", model=self.model_name)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
# treat the references as the questions and the predictions as answers
# assume a single reference
questions = [refs[0] for refs in references]
answers = predictions
# prepare for computation
inputs = [{"text": q, "text_pair": a} for q, a in zip(questions, answers)]
# compute the metric
# add function_to_apply="none" to disable sigmoid
return self.pipe(inputs, batch_size=self.batch_size)
class Perplexity(BulkInstanceMetric):
"""Computes the likelihood of generating text Y after text X - P(Y|X)."""
main_score = "perplexity"
reduction_map = {"mean": ["perplexity"]}
perplexity_prompt: str
batch_size: int = 32
model_name: str
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Dict],
) -> List[Dict[str, Any]]:
"""Computes the likelihood of generating text Y after text X - P(Y|X).
:param references: the list of Y texts as a list of singletons.
:param predictions: the list of X texts as a plain list of strings
:return: the likelihood of generating text Y_i after text X_i = P(Y_i|X_i) for every i.
"""
sources = []
targets = []
for prediction, instance_references in zip(predictions, references):
for instance_reference in instance_references:
sources.append(f"{self.perplexity_prompt} {prediction}")
targets.append(instance_reference)
from transformers import AutoConfig
config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
lm = (
self.EncoderDecoderLM(model_name=self.model_name)
if config.is_encoder_decoder is True
else self.DecoderOnlyLM(model_name=self.model_name)
)
# compute P(Q|P) and store in queue
scores = lm.compute_lm(
source=sources, target=targets, batch_size=self.batch_size
)
index = 0
all_instances_scores = []
for instance_references in references:
instance_scores = {}
instance_scores_list = []
for _ in range(len(instance_references)):
instance_scores_list.append(scores[index])
index += 1
instance_scores["reference_scores"] = instance_scores_list
# max seems more useful than mean for common use cases like
# context relevance, where what we want to know is if there
# is at least one good result in the context. Using mean will
# bring the score down due to bad contexts at the tail.
instance_scores[self.main_score] = max(instance_scores_list)
all_instances_scores.append(instance_scores)
return all_instances_scores
class AbstractLM(ABC):
def __init__(self, model_name):
import torch
from transformers import AutoTokenizer
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = self.model_class().from_pretrained(self.model_name)
self.is_cuda = torch.cuda.is_available()
def compute_lm(
self, source: List[str], target: List[str], batch_size: int
) -> List[float]:
import torch
scores = []
with torch.no_grad():
# break the documents to batches
n_batches = int(len(source) / batch_size)
batch_range = range(n_batches + 1)
for batch in batch_range:
batch_source = source[batch * batch_size : (batch + 1) * batch_size]
batch_target = target[batch * batch_size : (batch + 1) * batch_size]
if len(batch_source) > 0:
# tokenize the source and target
tokens_source = self.tokenizer(
batch_source, padding=True, return_tensors="pt"
)
tokens_target = self.tokenizer(
batch_target, padding=True, return_tensors="pt"
)
# compute the logits
logits, labels = self.compute_batch(
tokens_source, tokens_target
)
# logits is a tensor of size: batch_size * len(target) * vocab_size
# because for each example in the batch, the model predicted the
# logit at every position in the target, for every vocab item.
# the model returns mean over all batch. We run the CE again without reduction
# and extract the mean for each document
loss_fct = torch.nn.CrossEntropyLoss(
ignore_index=-100, reduction="none"
)
# logits.size(-1) = the dimension of the vocabulary
# labels.view(-1) = flattens the labels tensor to 1d
loss = loss_fct(
logits.view(-1, logits.size(-1)), labels.view(-1)
)
loss = loss.view(len(batch_source), -1)
# for each document, do mean only over the non zero values (sum(labels>0))
batch_loss = torch.sum(loss, dim=1) / torch.sum(
labels > 0, dim=1
)
# e^-average(cross-entropy-loss(logits) == geometric mean of the probabilities
# proof:
# * CE-loss of logits is computed by transforming the logits to
# probabilities by softmax, and then -log(p) is returned, where
# p is the probability of the gold label.
# * Averaging the CE loss is computed by summing over -log(p) and
# then dividing by the length of the gold labels.
# * Thus, pr_score = (-log(p_1) + ... + -log(p_n)) / n
# = -log(p_1 * ... * p_n) * 1/n
# * Therefore,
# e^(-pr_score) = e^(log(p_1 * ... * p_n) * 1/n)
# = (e^(log(p_1 * ... * p_n))) ^ 1/n
# = p_1 * ... * p_n) ^ 1/n
# = geometric mean of [p_1, ..., p_n]
#
# in principle we could have computed the geometric mean directly over the
# probabilities instead of e^(average cross entropy loss of the logits),
# but the current approach is more stable numerically. See for example:
# https://stackoverflow.com/questions/59722983/how-to-calculate-geometric-mean-in-a-differentiable-way
geometric_mean = (-batch_loss).exp()
# append the batch scores to the list of all scores
scores.append(geometric_mean)
return torch.cat(scores, dim=0).tolist()
@abstractmethod
def model_class(self):
pass
@abstractmethod
def compute_batch(self, tokens_source, tokens_target):
pass
class EncoderDecoderLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForSeq2SeqLM
return AutoModelForSeq2SeqLM
def compute_batch(self, tokens_source, tokens_target):
tokens_docs_ids = tokens_source["input_ids"]
attention = tokens_source["attention_mask"]
labels = tokens_target["input_ids"]
if self.is_cuda:
tokens_docs_ids, attention, labels = (
tokens_docs_ids.cuda(),
attention.cuda(),
labels.cuda(),
)
logits = self.model(
input_ids=tokens_docs_ids.long(),
attention_mask=attention.long(),
labels=labels.long(),
).logits
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
return logits, labels
class DecoderOnlyLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM
def compute_batch(self, tokens_source, tokens_target):
import torch
tokens = torch.cat(
[tokens_source["input_ids"], tokens_target["input_ids"]], dim=1
)
attention = torch.cat(
[tokens_source["attention_mask"], tokens_target["attention_mask"]],
dim=1,
)
labels = torch.cat(
[
torch.zeros_like(tokens_source["input_ids"]).fill_(-100),
tokens_target["input_ids"],
],
dim=1,
)
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
if self.is_cuda:
tokens, attention, labels = (
tokens.cuda(),
attention.cuda(),
labels.cuda(),
)
# no need to pass labels as we calculate the loss below per document
model_output = self.model(
input_ids=tokens.long(), attention_mask=attention.long()
)
logits = model_output.logits
# in decoder only, the first token is not being generated, it is taken from the input,
# so the model is generating from token 2 to n+1. therefore, we need to skip the last
# logit and the first label.
shifted_logits = logits[..., :-1, :].contiguous()
shifted_labels = labels[..., 1:].contiguous()
return shifted_logits, shifted_labels
class NDCG(GlobalMetric):
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
common use case where the instances are grouped by different queries, i.e., where the task is to provide a
relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
"query" input field of an instance) and the final score is the average across all queries.
Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
the same nDCG score w.r.t. a given set of reference scores.
See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
"""
main_score = "nDCG"
def prepare(self):
from sklearn.metrics import ndcg_score
super().prepare()
self.eval = ndcg_score
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
additional_inputs: List[Any],
) -> dict:
from collections import defaultdict
from statistics import mean
query_to_predictions_and_references = defaultdict(lambda: [[], []])
for reference, pred, inputs_dict in zip(
references, predictions, additional_inputs
):
query = inputs_dict.get("query")
query_to_predictions_and_references[query][0].append(pred)
query_to_predictions_and_references[query][1].append(reference)
scores = []
for q_predictions, q_references in query_to_predictions_and_references.values():
if len(q_references) == 1:
continue
if (
None in q_predictions
): # model failed to predict numeric scores for some instances
numeric_predictions = [
pred for pred in q_predictions if pred is not None
]
if len(numeric_predictions) <= 1: # no meaningful ranking
scores.append(0)
continue
# consider non-numeric model predictions as ranked last
min_value = min(numeric_predictions)
q_predictions = [
1 + (pred - min_value) if pred is not None else 0
for pred in q_predictions
]
scores.append(self.eval([q_references], [q_predictions]))
return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}
class RetrievalMetric(InstanceMetric):
def compute(
self, references: List[Any], prediction: Any, additional_inputs: Dict
) -> dict:
# digest input
pred_ids: List[Any] = prediction
ref_ids: List[Any] = list(dict.fromkeys(references))
# relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
# the doc id retrieved at position k (assuming it is 1-based, so k starts
# from 1) is in the gold doc ids or not.
# For example, assuming that in the retrieved docs we have correct predictions
# at positions 2, 4 and 5 (1-based), the dict will look like:
# {1: 0, 2: 1, 3: 0, 4: 1, 5: 1, ...}
relevance_at_k = {
k + 1: 1 if doc_id in ref_ids else 0 for k, doc_id in enumerate(pred_ids)
}
# relevance_sum_at_k: 1-based dictionary of counts, where the value at k determines
# how many gold doc ids have been observed up to index k.
relevance_sum_at_k = {}
for k, value in relevance_at_k.items():
relevance_sum_at_k[k] = relevance_sum_at_k.get(k - 1, 0) + value
# precision_at_k: the precision of the top k retrieved documents. For example,
# assuming that only 1 out of the first 4 retrieved documents is correct, the
# value at 4 will be 1/4.
precision_at_k = {k: value / k for k, value in relevance_sum_at_k.items()}
# recall_at_k: the recall of the top k retrieved documents. For example,
# assuming that only 2 out of the 3 gold documents are in the top 5 results,
# the value at 5 will be 2/3.
n_refs = len(ref_ids)
recall_at_k = {
k: value / n_refs if n_refs > 0 else 0
for k, value in relevance_sum_at_k.items()
}
# rank - the 1-based index of the first hit of a gold doc id. So 1
# means first position.
rank = 0
for k, relevance in relevance_at_k.items():
if relevance == 1:
rank = k
break
# match_at_k: whether we have a match at the top k retrieved documents
match_at_k = {
k: 1.0 if value > 0 else 0.0 for k, value in relevance_sum_at_k.items()
}
return self._compute(
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
)
@abstractmethod
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
pass
class MRR(RetrievalMetric):
reduction_map = {"mean": ["mrr"]}
main_score = "mrr"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
return {self.main_score: 1 / rank if rank > 0 else 0}
class MAP(RetrievalMetric):
reduction_map = {"mean": ["map"]}
main_score = "map"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = 0
if len(relevance_at_k) > 0:
total = sum(relevance_at_k.values())
if total > 0:
dot = sum(relevance_at_k[k] * precision_at_k[k] for k in relevance_at_k)
result = dot / total
return {self.main_score: result}
class RetrievalAtK(RetrievalMetric):
k_list: List[int]
main_score: str = None
reduction_map: Dict[str, List[str]] = None
def prepare(self):
super().prepare()
self.main_score = self.score_name("match", self.k_list[0])
self.ci_scores = [
self.score_name(measure, k)
for measure in ["precision", "recall", "match"]
for k in self.k_list
]
self.reduction_map = {"mean": self.ci_scores}
@staticmethod
def score_name(measure: str, k: int):
return f"{measure}_at_{k}"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = {}
for measure_array, measure_name in [
(precision_at_k, "precision"),
(recall_at_k, "recall"),
(match_at_k, "match"),
]:
max_k = max(measure_array.keys())
for k in self.k_list:
result[self.score_name(measure_name, k)] = measure_array[min(k, max_k)]
return result
class KPA(CustomF1):
def get_element_group(self, element, additional_input):
return additional_input["keypoint"]
def get_element_representation(self, element, additional_input):
return additional_input["keypoint"]
def should_ignore_element(self, element, additional_input):
return element == "none"