metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
x0:
- 187785
x1:
- 0
x10:
- 98.45860046637567
x11:
- 61.657549555908474
x12:
- 41.84577837324427
x13:
- 51.50421179302046
x14:
- 15.40016168148747
x15:
- 16.958113054087026
x16:
- 7.016658253407371
x17:
- 0.31728840754111515
x18:
- 0.37469684721099433
x2:
- 0.9987966305655837
x3:
- 0.9876543209876546
x4:
- 0.9621793942906827
x5:
- 0.9412654160563247
x6:
- 0.9297844692386968
x7:
- 23.85371179039301
x8:
- 15.242242787152968
x9:
- 78.08802650260293
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
objective | reg:squarederror |
base_score | |
booster | |
callbacks | |
colsample_bylevel | |
colsample_bynode | |
colsample_bytree | |
device | |
early_stopping_rounds | |
enable_categorical | False |
eval_metric | |
feature_types | |
gamma | |
grow_policy | |
importance_type | |
interaction_constraints | |
learning_rate | 0.01 |
max_bin | |
max_cat_threshold | |
max_cat_to_onehot | |
max_delta_step | |
max_depth | |
max_leaves | |
min_child_weight | |
missing | nan |
monotone_constraints | |
multi_strategy | |
n_estimators | |
n_jobs | |
num_parallel_tree | |
random_state | |
reg_alpha | |
reg_lambda | |
sampling_method | |
scale_pos_weight | |
subsample | |
tree_method | |
validate_parameters | |
verbosity |
Model Plot
XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.01, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.01, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]