mltwstock / README.md
davidgamma's picture
... commit message ...
7b0f44e verified
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-regression
model_format: pickle
model_file: model.pkl
widget:
  - structuredData:
      x0:
        - 187785
      x1:
        - 0
      x10:
        - 98.45860046637567
      x11:
        - 61.657549555908474
      x12:
        - 41.84577837324427
      x13:
        - 51.50421179302046
      x14:
        - 15.40016168148747
      x15:
        - 16.958113054087026
      x16:
        - 7.016658253407371
      x17:
        - 0.31728840754111515
      x18:
        - 0.37469684721099433
      x2:
        - 0.9987966305655837
      x3:
        - 0.9876543209876546
      x4:
        - 0.9621793942906827
      x5:
        - 0.9412654160563247
      x6:
        - 0.9297844692386968
      x7:
        - 23.85371179039301
      x8:
        - 15.242242787152968
      x9:
        - 78.08802650260293

Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
objective reg:squarederror
base_score
booster
callbacks
colsample_bylevel
colsample_bynode
colsample_bytree
device
early_stopping_rounds
enable_categorical False
eval_metric
feature_types
gamma
grow_policy
importance_type
interaction_constraints
learning_rate 0.01
max_bin
max_cat_threshold
max_cat_to_onehot
max_delta_step
max_depth
max_leaves
min_child_weight
missing nan
monotone_constraints
multi_strategy
n_estimators
n_jobs
num_parallel_tree
random_state
reg_alpha
reg_lambda
sampling_method
scale_pos_weight
subsample
tree_method
validate_parameters
verbosity

Model Plot

XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.01, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

[More Information Needed]

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]