Tuana's picture
Update README.md
22373eb
|
raw
history blame
4.68 kB
metadata
datasets:
  - squad_v2
license: cc-by-4.0
model-index:
  - name: deepset/xlm-roberta-base-squad2
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_v2
          type: squad_v2
          config: squad_v2
          split: validation
        metrics:
          - name: Exact Match
            type: exact_match
            value: 74.0354
            verified: true
          - name: F1
            type: f1
            value: 77.1833
            verified: true

Multilingual XLM-RoBERTa base for QA on various languages

Overview

Language model: xlm-roberta-base
Language: Multilingual
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0 dev set - German MLQA - German XQuAD
Code: See example in FARM
Infrastructure: 4x Tesla v100

Hyperparameters

batch_size = 22*4
n_epochs = 2
max_seq_len=256,
doc_stride=128,
learning_rate=2e-5,

Corresponding experiment logs in mlflow: link

Performance

Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 73.91560683904657
"f1": 77.14103746689592

Evaluated on German MLQA: test-context-de-question-de.json "exact": 33.67279167589108 "f1": 44.34437105434842 "total": 4517

Evaluated on German XQuAD: xquad.de.json "exact": 48.739495798319325 "f1": 62.552615701071495 "total": 1190

Usage

In Transformers

from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer

model_name = "deepset/xlm-roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

In FARM

from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/xlm-roberta-base-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)

In haystack

For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:

reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2")
# or 
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/xlm-roberta-base-squad2")

Authors

Branden Chan: branden.chan [at] deepset.ai Timo M枚ller: timo.moeller [at] deepset.ai Malte Pietsch: malte.pietsch [at] deepset.ai Tanay Soni: tanay.soni [at] deepset.ai

About us

deepset logo

We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.

Some of our work:

Get in touch: Twitter | LinkedIn | Discord | GitHub Discussions | Website

By the way: we're hiring!