Edit model card

Returns military aircraft type given cropped image with about 76% accuracy.

See https://www.kaggle.com/code/dima806/military-aircraft-detection-vit for more details.

image/png

Classification report:

              precision    recall  f1-score   support

         A10     0.8156    0.8889    0.8507       612
       A400M     0.8641    0.7794    0.8196       612
       AG600     0.9452    0.9592    0.9521       612
        AV8B     0.4991    0.9003    0.6422       612
          B1     0.8358    0.8154    0.8255       612
          B2     0.8924    0.9624    0.9261       612
         B52     0.9354    0.7337    0.8223       612
       Be200     0.8491    0.8922    0.8701       612
        C130     0.9104    0.4984    0.6441       612
         C17     0.8045    0.5310    0.6398       612
          C2     0.7765    0.8971    0.8324       612
          C5     0.6826    0.7239    0.7026       612
          E2     0.8866    0.9706    0.9267       612
          E7     0.8045    0.9951    0.8897       612
      EF2000     0.7348    0.2173    0.3354       612
        F117     0.8298    0.9722    0.8954       612
         F14     0.6531    0.7075    0.6792       612
         F15     0.6058    0.2059    0.3073       612
         F16     0.5390    0.2598    0.3506       612
         F18     0.5905    0.5866    0.5885       612
         F22     0.6273    0.7369    0.6777       612
         F35     0.5764    0.6536    0.6126       612
          F4     0.6749    0.3562    0.4663       612
          H6     0.9245    0.9199    0.9222       612
         J10     0.5846    0.6209    0.6022       612
         J20     0.8477    0.5458    0.6640       612
       JAS39     0.5615    0.4771    0.5159       612
        JF17     0.4866    0.9477    0.6430       612
       KC135     0.7706    0.9167    0.8373       612
         MQ9     0.8618    0.9167    0.8884       612
       Mig31     0.7900    0.6699    0.7250       612
  Mirage2000     0.8333    0.3758    0.5180       612
          P3     0.7997    0.9265    0.8584       612
         RQ4     0.8433    0.9412    0.8896       612
      Rafale     0.4622    0.5801    0.5145       612
        SR71     0.9030    0.9281    0.9154       612
        Su24     0.7059    0.6275    0.6644       612
        Su25     0.8569    0.8023    0.8287       612
        Su34     0.8042    0.8856    0.8429       612
        Su57     0.7061    0.8873    0.7864       612
     Tornado     0.6004    0.5523    0.5753       612
       Tu160     0.8468    0.9575    0.8988       612
       Tu22M     0.7758    0.9444    0.8519       612
        Tu95     0.9271    0.8938    0.9101       612
          U2     0.9094    0.7712    0.8347       612
         US2     0.7837    0.9118    0.8429       612
         V22     0.8788    0.9363    0.9066       612
      Vulcan     0.8971    0.8693    0.8830       612
        XB70     0.8857    1.0000    0.9394       612
        YF23     0.8673    0.9935    0.9261       612

    accuracy                         0.7608     30600
   macro avg     0.7690    0.7608    0.7488     30600
weighted avg     0.7690    0.7608    0.7488     30600
Downloads last month
183
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dima806/military_aircraft_image_detection

Finetuned
(1668)
this model