File size: 741 Bytes
2aec964
 
 
b96343b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
---
license: mit
---
Please following paper's format to use this model.

input: SPRiNGSと最も仲の良いライバルグループ。
<社会><文芸><学問><技術><自然>
固有表現抽出

output: <社会>固有表現抽出:その他の組織名;SPRiNGS

generated_ids = model.generate(inputs, max_new_tokens=2000) #Don't need any other set, just max new tokens.



paper cite:
https://arxiv.org/abs/2311.06838

bib: 
@misc{gan2023giellm,
      title={GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect}, 
      author={Chengguang Gan and Qinghao Zhang and Tatsunori Mori},
      year={2023},
      eprint={2311.06838},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}