File size: 741 Bytes
2aec964 b96343b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
---
license: mit
---
Please following paper's format to use this model.
input: SPRiNGSと最も仲の良いライバルグループ。
<社会><文芸><学問><技術><自然>
固有表現抽出
output: <社会>固有表現抽出:その他の組織名;SPRiNGS
generated_ids = model.generate(inputs, max_new_tokens=2000) #Don't need any other set, just max new tokens.
paper cite:
https://arxiv.org/abs/2311.06838
bib:
@misc{gan2023giellm,
title={GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect},
author={Chengguang Gan and Qinghao Zhang and Tatsunori Mori},
year={2023},
eprint={2311.06838},
archivePrefix={arXiv},
primaryClass={cs.CL}
} |