|
--- |
|
base_model: huudan123/model_stage1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:183796 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: nếu thời_gian đến mà họ phải có một cuộc đấu_tranh johny shanon |
|
có_thể là một người ngạc_nhiên |
|
sentences: |
|
- johny nghĩ anh ta là người giỏi nhất trong thị_trấn |
|
- nếu một cuộc đấu_tranh đã xảy ra johny có_thể ngạc_nhiên đấy |
|
- tất_cả bằng_chứng về văn_hóa từ xã_hội của umbria đã bị mất |
|
- source_sentence: chèn jay leno đùa ở đây |
|
sentences: |
|
- mathews đã chỉ ra rằng sẽ không cần phải tuyển_dụng luật_sư địa_phương |
|
- đây là nơi mà một trò_đùa jay leno sẽ đi |
|
- jay leno không phải là một diễn_viên hài |
|
- source_sentence: đúng_vậy tất_cả là lỗi của họ |
|
sentences: |
|
- bạn bị giới_hạn bởi số_lượng bộ_nhớ bạn đã có |
|
- phải tất_cả đều là lỗi của họ |
|
- rõ_ràng là tất_cả những lỗi của công_nhân |
|
- source_sentence: 6 mặc_dù mỗi cơ_quan phát_triển và triển_khai các thỏa_thuận hiệu_quả |
|
phản_ánh các ưu_tiên tổ_chức cụ_thể cấu_trúc và nền văn_hóa các thỏa_thuận hiệu_quả |
|
đã gặp các đặc_điểm sau |
|
sentences: |
|
- các thỏa_thuận hiệu_quả đã được phát_hành từ mỗi đại_lý |
|
- kế_hoạch hiệu_quả loại_trừ bất_cứ điều gì để làm với các cấu_trúc |
|
- không có gì bên trong sảnh trên đồi cả |
|
- source_sentence: hay na uy hay gì đó |
|
sentences: |
|
- na uy hay cái gì đó khác |
|
- điều đó hoàn_toàn không đúng |
|
- na uy hoặc từ một trong những quốc_gia scandinavia |
|
model-index: |
|
- name: SentenceTransformer based on huudan123/model_stage1 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts evaluator |
|
type: sts-evaluator |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6279986884327646 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6257861952118347 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6286844662908612 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6309663003206769 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6277475064516767 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6297451268540156 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.588316765453479 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5802157556789215 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6286844662908612 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6309663003206769 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on huudan123/model_stage1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1) <!-- at revision b7466e583ac080b4f544522adb1647a976398ea1 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("huudan123/model_stage2") |
|
# Run inference |
|
sentences = [ |
|
'hay na uy hay gì đó', |
|
'na uy hoặc từ một trong những quốc_gia scandinavia', |
|
'na uy hay cái gì đó khác', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-evaluator` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:----------| |
|
| pearson_cosine | 0.628 | |
|
| spearman_cosine | 0.6258 | |
|
| pearson_manhattan | 0.6287 | |
|
| spearman_manhattan | 0.631 | |
|
| pearson_euclidean | 0.6277 | |
|
| spearman_euclidean | 0.6297 | |
|
| pearson_dot | 0.5883 | |
|
| spearman_dot | 0.5802 | |
|
| pearson_max | 0.6287 | |
|
| **spearman_max** | **0.631** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `overwrite_output_dir`: True |
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `num_train_epochs`: 15 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `gradient_checkpointing`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: True |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 15 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: True |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max | |
|
|:-------:|:--------:|:-------------:|:----------:|:--------------------------:| |
|
| 0 | 0 | - | - | 0.6283 | |
|
| 0.6964 | 500 | 4.3237 | - | - | |
|
| 1.0 | 718 | - | 2.3703 | 0.6500 | |
|
| 1.3928 | 1000 | 2.2259 | - | - | |
|
| **2.0** | **1436** | **-** | **2.2597** | **0.624** | |
|
| 2.0891 | 1500 | 2.0143 | - | - | |
|
| 2.7855 | 2000 | 1.7433 | - | - | |
|
| 3.0 | 2154 | - | 2.3027 | 0.6405 | |
|
| 3.4819 | 2500 | 1.5279 | - | - | |
|
| 4.0 | 2872 | - | 2.3583 | 0.6094 | |
|
| 4.1783 | 3000 | 1.3796 | - | - | |
|
| 4.8747 | 3500 | 1.2096 | - | - | |
|
| 5.0 | 3590 | - | 2.4877 | 0.6069 | |
|
| 5.5710 | 4000 | 1.036 | - | - | |
|
| 6.0 | 4308 | - | 2.5685 | 0.6310 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |