Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adapter: qlora
base_model: meta-llama/Meta-Llama-3-8B-Instruct
base_model_config: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- path: vicgalle/alpaca-gpt4
  type: alpaca
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
hf_use_auth_token: true
hub_model_id: ibivibiv/llama-3-8b-instruct-alpaca-gpt-4
learning_rate: 0.0002
load_in_4bit: true
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: paged_adamw_32bit
output_dir: /job/out
sample_packing: true
save_safetensors: true
sequence_len: 4096
special_tokens:
  pad_token: <|end_of_text|>
tokenizer_type: AutoTokenizer
wandb_project: TuneStudio
wandb_run_id: mathllama
wandb_watch: 'true'
warmup_steps: 10

math-llama-3-8b-instruct

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the alpaca-gpt-4 dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ibivibiv/llama-3-8b-instruct-alpaca-gpt-4

Adapter
(616)
this model