Chandan Singh
update widget
a7490ff
metadata
license: mit
tags:
  - tabular-classification
  - sklearn
  - imodels
datasets:
  - imodels/compas-recidivism
widget:
  structuredData:
    age:
      - 40
      - 25
      - 36
      - 23
      - 29
    priors_count:
      - 0
      - 1
      - 11
      - 1
      - 0
    days_b_screening_arrest:
      - -1
      - -1
      - -1
      - -1
      - 0
    c_jail_time:
      - 0
      - 1
      - 2
      - 0
      - -1
    juv_fel_count:
      - 0
      - 0
      - 0
      - 0
      - 0
    juv_other_count:
      - 0
      - 0
      - 0
      - 0
      - 0
    juv_misd_count:
      - 0
      - 0
      - 0
      - 1
      - 0
    c_charge_degree:F:
      - 0
      - 1
      - 0
      - 0
      - 0
    c_charge_degree:M:
      - 1
      - 0
      - 1
      - 1
      - 1
    race:African-American:
      - 0
      - 0
      - 0
      - 0
      - 0
    race:Asian:
      - 0
      - 0
      - 0
      - 0
      - 0
    race:Caucasian:
      - 1
      - 0
      - 1
      - 1
      - 1
    race:Hispanic:
      - 0
      - 0
      - 0
      - 0
      - 0
    race:Native_American:
      - 0
      - 0
      - 0
      - 0
      - 0
    race:Other:
      - 0
      - 1
      - 0
      - 0
      - 0
    age_cat:25_-_45:
      - 1
      - 1
      - 1
      - 0
      - 1
    age_cat:Greater_than_45:
      - 0
      - 0
      - 0
      - 0
      - 0
    age_cat:Less_than_25:
      - 0
      - 0
      - 0
      - 1
      - 0
    sex:Female:
      - 0
      - 0
      - 0
      - 0
      - 0
    sex:Male:
      - 1
      - 1
      - 1
      - 1
      - 1

Load the data

from datasets import load_dataset
import imodels
import numpy as np
from sklearn.model_selection import GridSearchCV
import joblib

dataset = load_dataset("imodels/compas-recidivism")
df = pd.DataFrame(dataset['train'])
X_train = df.drop(columns=['is_recid'])
y_train = df['is_recid'].values

df_test = pd.DataFrame(dataset['test'])
X_test = df.drop(columns=['is_recid'])
y_test = df['is_recid'].values

Load the model

from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd

REPO_ID = "imodels/figs-compas-recidivism"
FILENAME = "sklearn_model.joblib"

model = joblib.load(cached_download(
    hf_hub_url(REPO_ID, FILENAME)
))

# model is a `imodels.FIGSClassifier`

Make prediction

preds = model.predict(X_test)
print('accuracy', np.mean(preds==y_test))
# accuracy 0.6759165485112416