x54-729 commited on
Commit
e63eb76
1 Parent(s): ae3bb61
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -20,19 +20,19 @@ license: other
20
 
21
  [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
22
 
23
- [[表情]Github Repo](https://github.com/InternLM/InternLM) • [[表情]Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
24
 
25
  </div>
26
 
27
 
28
  ## Introduction
29
- InternLM2-1.8B is the 1.8 billion parameter version of the second generation InternLM series. In order to facilitate user use and research, InternLM2-1.8B has two versions of open-source models. They are:
30
 
 
 
 
31
 
32
- - internlm2: Built upon the internlm2-base, this version has further pretrained on domain-specific corpus. It shows outstanding performance in evaluations while maintaining robust general language abilities, making it our recommended choice for most applications.
33
- - internlm2-chat: Optimized for conversational interaction on top of the internlm2-chat-sft through RLHF, it excels in instruction adherence, empathetic chatting, and tool invocation.
34
-
35
- The base model of InternLM2 has the following technical features:
36
 
37
  - Effective support for ultra-long contexts of up to 200,000 characters: The model nearly perfectly achieves "finding a needle in a haystack" in long inputs of 200,000 characters. It also leads among open-source models in performance on long-text tasks such as LongBench and L-Eval.
38
  - Comprehensive performance enhancement: Compared to the previous generation model, it shows significant improvements in various capabilities, including reasoning, mathematics, and coding.
@@ -44,8 +44,8 @@ The base model of InternLM2 has the following technical features:
44
 
45
  We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool [OpenCompass](https://github.com/open-compass/opencompass). Some of the evaluation results are shown in the table below. You are welcome to visit the [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
46
 
47
- | Dataset\Models | InternLM2-1.8B | InternLM2-Chat-1.8B | InternLM2-7B | InternLM2-Chat-7B |
48
- | --- | --- | --- | --- | --- |
49
  | MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
50
  | AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
51
  | BBH | 37.5 | 35.2 | 65.0 | 61.2 |
@@ -91,12 +91,13 @@ print(output)
91
  The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <[email protected]>.
92
 
93
  ## 简介
94
- 书生·浦语-1.8B (InternLM2-1.8B) 是第二代浦语模型系列的18亿参数版本。为了方便用户使用和研究,书生·浦语-1.8B (InternLM2-1.8B) 共有两个版本的开源模型,他们分别是:
95
 
96
- - internlm2: 在internlm2-base基础上,进一步在特定领域的语料上进行预训练,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座;
97
- - internlm2-chat:在internlm2-chat-sft基础上,经过RLHF,面向对话交互进行了优化,具有很好的指令遵循、共情聊天和调用工具等的能力。
 
98
 
99
- InternLM2 的基础模型具备以下的技术特点
100
 
101
  - ��效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。
102
  - 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码等方面的能力提升显著。
@@ -107,8 +108,8 @@ InternLM2 的基础模型具备以下的技术特点
107
 
108
  我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 对 InternLM2 在几个重要的评测集进行了评测 ,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
109
 
110
- | 评测集 | InternLM2-1.8B | InternLM2-Chat-1.8B | InternLM2-7B | InternLM2-Chat-7B |
111
- | --- | --- | --- | --- | --- |
112
  | MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
113
  | AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
114
  | BBH | 37.5 | 35.2 | 65.0 | 61.2 |
 
20
 
21
  [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
22
 
23
+ [💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
24
 
25
  </div>
26
 
27
 
28
  ## Introduction
29
+ InternLM2-1.8B is the 1.8 billion parameter version of the second generation InternLM series. In order to facilitate user use and research, InternLM2-1.8B has three versions of open-source models. They are:
30
 
31
+ - InternLM2-1.8B: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
32
+ - InternLM2-Chat-1.8B-SFT: Chat model after supervised fine-tuning (SFT) on InternLM2-1.8B.
33
+ - InternLM2-Chat-1.8B: Further aligned on top of InternLM2-Chat-1.8B-SFT through online RLHF. InternLM2-Chat-1.8B-SFT exhibits better instruction following, chat experience, and function calling, which is recommended for downstream applications.
34
 
35
+ The InternLM2 has the following technical features:
 
 
 
36
 
37
  - Effective support for ultra-long contexts of up to 200,000 characters: The model nearly perfectly achieves "finding a needle in a haystack" in long inputs of 200,000 characters. It also leads among open-source models in performance on long-text tasks such as LongBench and L-Eval.
38
  - Comprehensive performance enhancement: Compared to the previous generation model, it shows significant improvements in various capabilities, including reasoning, mathematics, and coding.
 
44
 
45
  We have evaluated InternLM2 on several important benchmarks using the open-source evaluation tool [OpenCompass](https://github.com/open-compass/opencompass). Some of the evaluation results are shown in the table below. You are welcome to visit the [OpenCompass Leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
46
 
47
+ | Dataset\Models | InternLM2-1.8B | InternLM2-Chat-1.8B-SFT | InternLM2-7B | InternLM2-Chat-7B |
48
+ | :---: | :---: | :---: | :---: | :---: |
49
  | MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
50
  | AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
51
  | BBH | 37.5 | 35.2 | 65.0 | 61.2 |
 
91
  The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <[email protected]>.
92
 
93
  ## 简介
94
+ 书生·浦语-1.8B (InternLM2-1.8B) 是第二代浦语模型系列的18亿参数版本。为了方便用户使用和研究,书生·浦语-1.8B (InternLM2-1.8B) 共有三个版本的开源模型,他们分别是:
95
 
96
+ - InternLM2-1.8B: 具有高质量和高适应灵活性的基础模型,为下游深度适应提供了良好的起点。
97
+ - InternLM2-Chat-1.8B-SFT:在 InternLM2-1.8B 上进行监督微调 (SFT) 后得到的对话模型。
98
+ - InternLM2-chat-1.8B:通过在线 RLHF 在 InternLM2-Chat-1.8B-SFT 之上进一步对齐。 InternLM2-Chat-1.8B-SFT 表现出更好的指令跟随、聊天体验和函数调用,推荐下游应用程序使用。
99
 
100
+ InternLM2 模型具备以下的技术特点
101
 
102
  - ��效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。
103
  - 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码等方面的能力提升显著。
 
108
 
109
  我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 对 InternLM2 在几个重要的评测集进行了评测 ,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
110
 
111
+ | 评测集 | InternLM2-1.8B | InternLM2-Chat-1.8B-SFT | InternLM2-7B | InternLM2-Chat-7B |
112
+ | :---: | :---: | :---: | :---: | :---: |
113
  | MMLU | 46.9 | 47.1 | 65.8 | 63.7 |
114
  | AGIEval | 33.4 | 38.8 | 49.9 | 47.2 |
115
  | BBH | 37.5 | 35.2 | 65.0 | 61.2 |