Edit model card

LightNovel-Intro-RetNet-400M

This model is a RetNet model trained from scratch using https://github.com/syncdoth/RetNet.

Demo: https://huggingface.co/spaces/isek-ai/LightNovel-Intro-RetNet-400M-Demo

Usage

First install the required libraries:

pip install transformers safetensors timm

Example inference script:

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

MODEL_NAME = "isek-ai/LightNovel-Intro-RetNet-400M"

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
).to(device)
gen_config = GenerationConfig.from_pretrained(MODEL_NAME)
gen_config.max_new_tokens = 32

inputs = tokenizer("็›ฎใŒ่ฆšใ‚ใ‚‹ใจใ€", return_tensors="pt", add_special_tokens=False).to(device)

print("Generating...")

result = model.generate(**inputs, generation_config=gen_config)

print(tokenizer.decode(result[0], skip_special_tokens=True))
# ็›ฎใŒ่ฆšใ‚ใ‚‹ใจใ€่ฆ‹็Ÿฅใ‚‰ใฌ็ฉบ้–“ใซๅฑ…ใŸใ€‚ ใ€Œใ‚“......?ใ€ ๆ€ใ‚ใšใใ‚“ใชๅฃฐใŒๅ‡บใŸใ“ใจใซ้•ๅ’Œๆ„Ÿใ‚’ๆ„Ÿใ˜ใ‚‹ใ€‚็ขบใ‹ใ€ๆฐ—ไป˜ใ‘ใฐ็งใฏ

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
5.5155 0.06 1000 5.5331
5.0106 0.13 2000 5.1774
4.793 0.19 3000 4.9399
4.7078 0.26 4000 4.7737
4.4789 0.32 5000 4.6373
4.3269 0.38 6000 4.5422
4.337 0.45 7000 4.4632
4.374 0.51 8000 4.4070
4.1447 0.58 9000 4.3293
4.1402 0.64 10000 4.2881
4.1329 0.7 11000 4.2287
3.9985 0.77 12000 4.1858
4.1185 0.83 13000 4.1506
4.0515 0.9 14000 4.0993
3.9984 0.96 15000 4.0611
3.7731 1.02 16000 4.0423
3.7403 1.09 17000 3.8166
3.6778 1.15 18000 3.8000
3.7227 1.22 19000 3.7875
3.6051 1.28 20000 3.7664
3.6143 1.34 21000 3.7496
3.6323 1.41 22000 3.7278
3.6487 1.47 23000 3.7089
3.6524 1.54 24000 3.6951
3.5621 1.6 25000 3.6801
3.5722 1.66 26000 3.6708
3.5277 1.73 27000 3.6635
3.6224 1.79 28000 3.6565
3.5663 1.85 29000 3.6532
3.5937 1.92 30000 3.6515
3.5944 1.98 31000 3.6510

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
56
Safetensors
Model size
404M params
Tensor type
F32
ยท
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.