jab11769's picture
fine-tune-wangchanberta-SABINA-split-headline1-test
7ddb401 verified
metadata
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: fine-tune-wangchanberta-stock-thai
    results: []

fine-tune-wangchanberta-stock-thai

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0974
  • Accuracy: 0.4010
  • Precision: 0.3527
  • Recall: 0.4010
  • F1: 0.2439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0643 1.0 26 1.1045 0.3564 0.2361 0.3564 0.2750
1.08 2.0 52 1.0902 0.3960 0.1568 0.3960 0.2247
1.074 3.0 78 1.1016 0.3960 0.1568 0.3960 0.2247
1.0613 4.0 104 1.0929 0.3960 0.1568 0.3960 0.2247
1.0564 5.0 130 1.0990 0.3960 0.1568 0.3960 0.2247
1.053 6.0 156 1.1003 0.3960 0.1568 0.3960 0.2247
1.0498 7.0 182 1.0968 0.3911 0.1557 0.3911 0.2227
1.0444 8.0 208 1.0946 0.3911 0.1557 0.3911 0.2227
1.0418 9.0 234 1.0990 0.3960 0.1568 0.3960 0.2247
1.0385 10.0 260 1.0982 0.3960 0.3025 0.3960 0.2331
1.0352 11.0 286 1.0980 0.3911 0.1557 0.3911 0.2227
1.0401 12.0 312 1.1001 0.3911 0.1557 0.3911 0.2227
1.0395 13.0 338 1.0970 0.4010 0.3519 0.4010 0.2431
1.032 14.0 364 1.0971 0.4010 0.3519 0.4010 0.2431
1.0351 15.0 390 1.0977 0.4010 0.3527 0.4010 0.2439
1.0262 16.0 416 1.0970 0.4010 0.3527 0.4010 0.2439
1.0385 17.0 442 1.0970 0.4010 0.3527 0.4010 0.2439
1.031 18.0 468 1.0970 0.4010 0.3527 0.4010 0.2439
1.0313 19.0 494 1.0969 0.4010 0.3527 0.4010 0.2439
1.0429 20.0 520 1.0974 0.4010 0.3527 0.4010 0.2439

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1