Model Card
blenderbot-small-tflite
is a tflite version of blenderbot-small-90M
I converted for my UTA CSE3310 class. See the repo at https://github.com/kmosoti/DesparadosAEYE and the conversion process here.
You have to right pad your user and model input integers to make them [32,]-shaped. Then indicate te true length with the 3rd and 4th params.
display(interpreter.get_input_details())
display(interpreter.get_output_details())
[{'dtype': numpy.int32,
'index': 0,
'name': 'input_tokens',
'quantization': (0.0, 0),
'quantization_parameters': {'quantized_dimension': 0,
'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32)},
'shape': array([32], dtype=int32),
'shape_signature': array([32], dtype=int32),
'sparsity_parameters': {}},
{'dtype': numpy.int32,
'index': 1,
'name': 'decoder_input_tokens',
'quantization': (0.0, 0),
'quantization_parameters': {'quantized_dimension': 0,
'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32)},
'shape': array([32], dtype=int32),
'shape_signature': array([32], dtype=int32),
'sparsity_parameters': {}},
{'dtype': numpy.int32,
'index': 2,
'name': 'input_len',
'quantization': (0.0, 0),
'quantization_parameters': {'quantized_dimension': 0,
'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32)},
'shape': array([], dtype=int32),
'shape_signature': array([], dtype=int32),
'sparsity_parameters': {}},
{'dtype': numpy.int32,
'index': 3,
'name': 'decoder_input_len',
'quantization': (0.0, 0),
'quantization_parameters': {'quantized_dimension': 0,
'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32)},
'shape': array([], dtype=int32),
'shape_signature': array([], dtype=int32),
'sparsity_parameters': {}}]
[{'dtype': numpy.int32,
'index': 3113,
'name': 'Identity',
'quantization': (0.0, 0),
'quantization_parameters': {'quantized_dimension': 0,
'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32)},
'shape': array([1], dtype=int32),
'shape_signature': array([1], dtype=int32),
'sparsity_parameters': {}}]