Edit model card

layoutlmv3-finetuned-cedulas_v3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_cedulas_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0832
  • Precision: 0.8992
  • Recall: 0.9068
  • F1: 0.9030
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.12 250 0.7409 0.2850 0.2729 0.2788 0.8614
0.9048 6.25 500 0.3660 0.6222 0.6559 0.6386 0.9393
0.9048 9.38 750 0.2132 0.7492 0.7593 0.7542 0.9544
0.2923 12.5 1000 0.1467 0.7830 0.7949 0.7889 0.9661
0.2923 15.62 1250 0.1172 0.8114 0.8237 0.8175 0.9701
0.1445 18.75 1500 0.1013 0.8560 0.8763 0.8660 0.9766
0.1445 21.88 1750 0.0952 0.8811 0.8915 0.8863 0.9794
0.0956 25.0 2000 0.0876 0.8923 0.8983 0.8953 0.9807
0.0956 28.12 2250 0.0840 0.9005 0.9051 0.9028 0.9811
0.0766 31.25 2500 0.0832 0.8992 0.9068 0.9030 0.9817

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results