MixtureofMerges-MoE-4x7b-v3
MixtureofMerges-MoE-4x7b-v3 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
- senseable/WestLake-7B-v2
- mlabonne/OmniBeagle-7B
- vanillaOVO/supermario_v3
🧩 Configuration
base_model: senseable/WestLake-7B-v2
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
positive_prompts:
- "Answer this question from the ARC (Argument Reasoning Comprehension)."
- "Use common sense and logical reasoning skills."
negative_prompts:
- "nonsense"
- "irrational"
- "math"
- "code"
- source_model: senseable/WestLake-7B-v2
positive_prompts:
- "Answer this question from the Winogrande test."
- "Use advanced knowledge of culture and humanity"
negative_prompts:
- "ignorance"
- "uninformed"
- "creativity"
- source_model: mlabonne/OmniBeagle-7B
positive_prompts:
- "Calculate the answer to this math problem"
- "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
- "solve for"
negative_prompts:
- "incorrect"
- "inaccurate"
- "creativity"
- source_model: vanillaOVO/supermario_v3
positive_prompts:
- "Predict the most plausible continuation for this scenario."
- "Demonstrate understanding of everyday commonsense in your response."
- "Use contextual clues to determine the most likely outcome."
- "Apply logical reasoning to complete the given narrative."
- "Infer the most realistic action or event that follows."
negative_prompts:
- "guesswork"
- "irrelevant information"
- "contradictory response"
- "illogical conclusion"
- "ignoring context"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/MixtureofMerges-MoE-4x7b-v3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.31 |
AI2 Reasoning Challenge (25-Shot) | 74.40 |
HellaSwag (10-Shot) | 88.62 |
MMLU (5-Shot) | 64.82 |
TruthfulQA (0-shot) | 70.78 |
Winogrande (5-shot) | 85.00 |
GSM8k (5-shot) | 68.23 |
- Downloads last month
- 87
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jsfs11/MixtureofMerges-MoE-4x7b-v3
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard74.400
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.620
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.820
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard70.780
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.000
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard68.230