zephyr-7b-dpo-qlora / README.md
ketchup123's picture
End of training
4a1941e verified
metadata
library_name: peft
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-qlora
    results: []

zephyr-7b-dpo-qlora

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5031
  • Rewards/chosen: -1.9728
  • Rewards/rejected: -2.9618
  • Rewards/accuracies: 0.7695
  • Rewards/margins: 0.9890
  • Logps/rejected: -543.7128
  • Logps/chosen: -443.7073
  • Logits/rejected: -1.1810
  • Logits/chosen: -1.2525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5646 0.2093 100 0.5739 -0.9253 -1.4816 0.7188 0.5564 -395.6964 -338.9565 -1.9267 -1.9878
0.5524 0.4186 200 0.5318 -0.8476 -1.5395 0.7617 0.6919 -401.4810 -331.1845 -1.5104 -1.5801
0.4977 0.6279 300 0.5100 -1.8821 -2.8383 0.7773 0.9562 -531.3586 -434.6388 -1.1156 -1.1878
0.5096 0.8373 400 0.5035 -2.0213 -3.0170 0.7656 0.9957 -549.2363 -448.5603 -1.1850 -1.2569

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.1.2+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1