khanhld
update readme
128a1fa
|
raw
history blame
5.7 kB
metadata
language: vi
datasets:
  - vivos
  - common_voice
  - fpt
  - vlsp 100h
metrics:
  - wer
pipeline_tag: automatic-speech-recognition
tags:
  - audio
  - speech
  - Transformer
  - wav2vec2
  - automatic-speech-recognition
  - vietnamese
license: cc-by-nc-4.0
widget:
  - example_title: common_voice_vi_30519758.mp3
    src: >-
      https://huggingface.co/khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/common_voice_vi_30519758.mp3
  - example_title: VIVOSDEV15_020.wav
    src: >-
      https://huggingface.co/khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/VIVOSDEV15_020.wav
model-index:
  - name: Wav2vec2 Base Vietnamese 160h
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common-voice-vietnamese
          type: common_voice
          args: vi
        metrics:
          - name: Test WER
            type: wer
            value: 10.78
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: VIVOS
          type: vivos
          args: vi
        metrics:
          - name: Test WER
            type: wer
            value: 15.05

PWC PWC

Vietnamese Speech Recognition using Wav2vec 2.0

Table of contents

  1. Model Description
  2. Benchmark Result
  3. Example Usage
  4. Evaluation
  5. Contact

Model Description

Fine-tuned the Wav2vec2-based model on about 160 hours of Vietnamese speech dataset from different resources including VIOS, COMMON VOICE, FOSD and VLSP 100h. We have not yet incorporated the Language Model into our ASR system but still gained a promising result.
We also provide code for Pre-training and Fine-tuning the Wav2vec2 model (not available for now but will release soon). If you wish to train on your dataset, check it out here:

Benchmark WER Result

VIVOS COMMON VOICE 8.0
without LM 15.05 10.78
with LM in progress in progress

Example Usage

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import librosa
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model.to(device)

def transcribe(wav):
  input_values = processor(wav, sampling_rate=16000, return_tensors="pt").input_values
  logits = model(input_values.to(device)).logits
  pred_ids = torch.argmax(logits, dim=-1)
  pred_transcript = processor.batch_decode(pred_ids)[0]
  return pred_transcript


wav, _ = librosa.load('path/to/your/audio/file', sr = 16000)
print(f"transcript: {transcribe(wav)}")

Evaluation

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
import re
from datasets import load_dataset, load_metric, Audio

wer = load_metric("wer")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# load processor and model
processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h")
model.to(device)
model.eval()

# Load dataset
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test")
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))
chars_to_ignore = r'[,?.!\-;:"“%\'�]' # ignore special characters

# preprocess data
def preprocess(batch):
  audio = batch["audio"]
  batch["input_values"] = audio["array"]
  batch["transcript"] = re.sub(chars_to_ignore, '', batch["sentence"]).lower()
  return batch

# run inference
def inference(batch):
  input_values = processor(batch["input_values"], 
                            sampling_rate=16000, 
                            return_tensors="pt").input_values
  logits = model(input_values.to(device)).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_transcript"] = processor.batch_decode(pred_ids) 
  return batch
  
test_dataset = test_dataset.map(preprocess)
result = test_dataset.map(inference, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_transcript"], references=result["transcript"])))

Test Result: 10.78%

Contact