louislu9911's picture
Model save
ddde838 verified
metadata
license: apache-2.0
base_model: microsoft/resnet-152
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-152-finetuned-cassava-leaf-disease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7397196261682243

resnet-152-finetuned-cassava-leaf-disease

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7961
  • Accuracy: 0.7397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 480
  • eval_batch_size: 480
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1920
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.309 0.98 10 7.0088 0.0028
6.9946 1.95 20 6.4363 0.0061
6.4082 2.93 30 5.5840 0.0673
5.6018 4.0 41 4.1884 0.3687
4.5652 4.98 51 3.3123 0.4640
3.6106 5.95 61 2.7918 0.5136
2.9184 6.93 71 2.3762 0.5636
2.3775 8.0 82 1.9163 0.6084
2.0119 8.98 92 1.7038 0.6299
1.7519 9.95 102 1.5220 0.6411
1.4995 10.93 112 1.3828 0.6575
1.3648 12.0 123 1.2715 0.6668
1.2357 12.98 133 1.2040 0.6692
1.1606 13.95 143 1.1249 0.6785
1.0793 14.93 153 1.0600 0.6897
1.0332 16.0 164 1.0160 0.6935
0.9724 16.98 174 0.9706 0.7047
0.9349 17.95 184 0.9524 0.7075
0.895 18.93 194 0.9210 0.7093
0.8913 20.0 205 0.9007 0.7168
0.8519 20.98 215 0.8672 0.7229
0.8434 21.95 225 0.8432 0.7252
0.8346 22.93 235 0.8307 0.7304
0.8019 24.0 246 0.8154 0.7308
0.8001 24.98 256 0.8121 0.7327
0.7813 25.95 266 0.8036 0.7341
0.7845 26.93 276 0.8025 0.7383
0.7635 28.0 287 0.7934 0.7444
0.7782 28.98 297 0.7910 0.7421
0.7634 29.27 300 0.7961 0.7397

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1