marcel/phi-2-openhermes-30k
This model was converted to MLX format from microsoft/phi-2
.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model marcel/phi-2-openhermes-30k --prompt "My name is"
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"marcel/phi-2-openhermes-30k",
low_cpu_mem_usage=True,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained("phi-2-openhermes-30k")
input_text = "### Human: Give me a good recipe for a chinese dish\n\n### Assistant:"
outputs = model.generate(
tokenizer(input_text, return_tensors="pt").to(model.device)['input_ids'],
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 60.37 |
AI2 Reasoning Challenge (25-Shot) | 61.01 |
HellaSwag (10-Shot) | 74.72 |
MMLU (5-Shot) | 57.17 |
TruthfulQA (0-shot) | 45.38 |
Winogrande (5-shot) | 74.90 |
GSM8k (5-shot) | 49.05 |
- Downloads last month
- 80
Inference API (serverless) does not yet support mlx models for this pipeline type.
Dataset used to train marcel/phi-2-openhermes-30k
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard61.010
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard74.720
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard57.170
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard45.380
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard74.900
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard49.050