mikr's picture
Librarian Bot: Add base_model information to model (#2)
12a24a5
metadata
language:
  - cs
license: apache-2.0
tags:
  - whisper-event
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium Czech 2 CV11
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: cs
          split: test
        metrics:
          - type: wer
            value: 11.408629675328264
            name: Wer

Whisper Medium Czech 2 CV11

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2417
  • Wer: 11.4086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0105 4.24 1000 0.1973 12.6130
0.0016 8.47 2000 0.2198 11.8985
0.0004 12.71 3000 0.2310 11.4547
0.0003 16.95 4000 0.2380 11.4270
0.0002 21.19 5000 0.2417 11.4086

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2