πΆ Beagle
Collection
Merges done using mergekit and LazyMergekit: https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb#scrollTo=d5mYzDo1q96y
β’
8 items
β’
Updated
β’
6
Update 01/16/24: Check the DPO fine-tuned version of this model, NeuralBeagle14-7B (probably the best 7B model you can find)! π
Beagle14-7B is a merge of the following models using LazyMergekit:
The evaluation was performed using LLM AutoEval on Nous suite.
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
Beagle14-7B | 44.38 | 76.53 | 69.44 | 47.25 | 59.4 |
OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | 52.42 |
NeuralHermes-2.5-Mistral-7B | 43.67 | 73.24 | 55.37 | 41.76 | 53.51 |
Nous-Hermes-2-SOLAR-10.7B | 47.79 | 74.69 | 55.92 | 44.84 | 55.81 |
Marcoro14-7B-slerp | 44.66 | 76.24 | 64.15 | 45.64 | 57.67 |
CatMarcoro14-7B-slerp | 45.21 | 75.91 | 63.81 | 47.31 | 58.06 |
slices:
- sources:
- model: fblgit/UNA-TheBeagle-7b-v1
layer_range: [0, 32]
- model: argilla/distilabeled-Marcoro14-7B-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: fblgit/UNA-TheBeagle-7b-v1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Beagle14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.76 |
AI2 Reasoning Challenge (25-Shot) | 72.95 |
HellaSwag (10-Shot) | 87.95 |
MMLU (5-Shot) | 64.70 |
TruthfulQA (0-shot) | 68.88 |
Winogrande (5-shot) | 82.64 |
GSM8k (5-shot) | 71.42 |