LlamaXCoder-3.2-3B-Instruct
Introduction
LlamaXCoder-3.2-3B-Instruct is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct, trained on the cData coding dataset to improve its reasoning and coding ability.
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"motexture/LlamaXCoder-3.2-3B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("motexture/LlamaXCoder-3.2-3B-Instruct")
prompt = "Write a C++ program that prints Hello World!"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096,
do_sample=True,
temperature=0.3
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
License
- Downloads last month
- 7
Model tree for motexture/LlamaXCoder-3.2-3B-Instruct
Base model
meta-llama/Llama-3.2-3B-Instruct