ExLlamaV2 quantizations
Collection
All my EXL2 quants here.
•
32 items
•
Updated
This is an ExLlamaV2 quantized model in 4bpw of mpasila/Finnish-Alpaca-Tiny-V2-7B using the default calibration dataset.
This is a merge of mpasila/Finnish-Alpaca-Tiny-V2-LoRA-7B.
LoRA trained in 4-bit with 2k context using LumiOpen/Viking-7B as the base model for 1 epoch.
Dataset used is mpasila/Finnish-Alpaca-Tiny.
It works relatively well for question and answering. I will make a bigger dataset for the next fine-tune.
It uses Alpaca format but with a translated instruction at the start:
{
"instruction,output": "Alla on ohje, jossa kuvataan tehtävä. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%",
"instruction,input,output": "Alla on ohje, jossa kuvataan tehtävä ja joka on yhdistetty kontekstia lisäävään syötteeseen. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%"
}
Model | Size | Type | FIN-bench (score) |
---|---|---|---|
mpasila/Finnish-Alpaca-Tiny-V2-7B | 7B | Instruct | 0.4654 |
mpasila/Finnish-Alpaca-Small-7B | 7B | Instruct | 0.3586 |
mpasila/Alpacazord-Viking-7B | 7B | Instruct | 0.4123 |
mpasila/NordicAlpaca-Finnish-V1-7B | 7B | Instruct | 0.3891 |
mpasila/Finnish-Viking-Alpaca-V1-7B | 7B | Instruct | 0.3943 |
Finnish-NLP/llama-7b-finnish-instruct-v0.1 | 7B | Instruct | 0.4365 |
Finnish-NLP/llama-7b-finnish-instruct-v0.2 | 7B | Instruct | 0.3993 |
Finnish-NLP/llama-7b-finnish | 7B | Base | 0.2350 |
LumiOpen/Viking-7B (1000B) | 7B | Base | 0.3721 |
HPLT/gpt-7b-nordic-prerelease | 7B | Base | 0.3169 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_analogies | 0 | multiple_choice_grade | 0.6385 | ± | 0.0423 |
bigbench_arithmetic_1_digit_addition | 0 | multiple_choice_grade | 0.7200 | ± | 0.0451 |
bigbench_arithmetic_1_digit_division | 0 | multiple_choice_grade | 0.7391 | ± | 0.0936 |
bigbench_arithmetic_1_digit_multiplication | 0 | multiple_choice_grade | 0.4800 | ± | 0.0502 |
bigbench_arithmetic_1_digit_subtraction | 0 | multiple_choice_grade | 0.6300 | ± | 0.0485 |
bigbench_arithmetic_2_digit_addition | 0 | multiple_choice_grade | 0.4000 | ± | 0.0492 |
bigbench_arithmetic_2_digit_division | 0 | multiple_choice_grade | 0.5000 | ± | 0.0503 |
bigbench_arithmetic_2_digit_multiplication | 0 | multiple_choice_grade | 0.2800 | ± | 0.0451 |
bigbench_arithmetic_2_digit_subtraction | 0 | multiple_choice_grade | 0.4300 | ± | 0.0498 |
bigbench_arithmetic_3_digit_addition | 0 | multiple_choice_grade | 0.5800 | ± | 0.0496 |
bigbench_arithmetic_3_digit_division | 0 | multiple_choice_grade | 0.3100 | ± | 0.0465 |
bigbench_arithmetic_3_digit_multiplication | 0 | multiple_choice_grade | 0.2900 | ± | 0.0456 |
bigbench_arithmetic_3_digit_subtraction | 0 | multiple_choice_grade | 0.5100 | ± | 0.0502 |
bigbench_arithmetic_4_digit_addition | 0 | multiple_choice_grade | 0.5300 | ± | 0.0502 |
bigbench_arithmetic_4_digit_division | 0 | multiple_choice_grade | 0.3900 | ± | 0.0490 |
bigbench_arithmetic_4_digit_multiplication | 0 | multiple_choice_grade | 0.3100 | ± | 0.0465 |
bigbench_arithmetic_4_digit_subtraction | 0 | multiple_choice_grade | 0.6200 | ± | 0.0488 |
bigbench_arithmetic_5_digit_addition | 0 | multiple_choice_grade | 0.6500 | ± | 0.0479 |
bigbench_arithmetic_5_digit_division | 0 | multiple_choice_grade | 0.3200 | ± | 0.0469 |
bigbench_arithmetic_5_digit_multiplication | 0 | multiple_choice_grade | 0.3000 | ± | 0.0461 |
bigbench_arithmetic_5_digit_subtraction | 0 | multiple_choice_grade | 0.6400 | ± | 0.0482 |
bigbench_cause_and_effect_one_sentence | 0 | multiple_choice_grade | 0.5686 | ± | 0.0700 |
bigbench_cause_and_effect_one_sentence_no_prompt | 0 | multiple_choice_grade | 0.6471 | ± | 0.0676 |
bigbench_cause_and_effect_two_sentences | 0 | multiple_choice_grade | 0.4314 | ± | 0.0700 |
bigbench_emotions | 0 | multiple_choice_grade | 0.2250 | ± | 0.0331 |
bigbench_empirical_judgments | 0 | multiple_choice_grade | 0.2525 | ± | 0.0439 |
bigbench_general_knowledge | 0 | multiple_choice_grade | 0.3429 | ± | 0.0571 |
bigbench_hhh_alignment_harmless | 0 | multiple_choice_grade | 0.3793 | ± | 0.0643 |
bigbench_hhh_alignment_helpful | 0 | multiple_choice_grade | 0.3390 | ± | 0.0622 |
bigbench_hhh_alignment_honest | 0 | multiple_choice_grade | 0.3729 | ± | 0.0635 |
bigbench_hhh_alignment_other | 0 | multiple_choice_grade | 0.5349 | ± | 0.0770 |
bigbench_intent_recognition | 0 | multiple_choice_grade | 0.2153 | ± | 0.0156 |
bigbench_misconceptions | 0 | multiple_choice_grade | 0.5224 | ± | 0.0433 |
bigbench_paraphrase | 0 | multiple_choice_grade | 0.4750 | ± | 0.0354 |
bigbench_sentence_ambiguity | 0 | multiple_choice_grade | 0.4833 | ± | 0.0651 |
bigbench_similarities_abstraction | 0 | multiple_choice_grade | 0.6974 | ± | 0.0530 |
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Base model
LumiOpen/Viking-7B