|
--- |
|
language: es |
|
thumbnail: https://imgur.com/uxAvBfh |
|
tags: |
|
- QA |
|
- SQuAD |
|
|
|
--- |
|
|
|
# Electricidad small + Spanish SQuAD v1 ⚡❓ |
|
|
|
[Electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) fine-tuned on [Spanish SQUAD v1.1 dataset](https://github.com/ccasimiro88/TranslateAlignRetrieve/tree/master/SQuAD-es-v1.1) for **Q&A** downstream task. |
|
|
|
## Details of the downstream task (Q&A) - Dataset 📚 |
|
|
|
[SQuAD-es-v1.1](https://github.com/ccasimiro88/TranslateAlignRetrieve/tree/master/SQuAD-es-v1.1) |
|
|
|
| Dataset split | # Samples | |
|
| ------------- | --------- | |
|
| Train | 130 K | |
|
| Test | 11 K | |
|
|
|
## Model training 🏋️ |
|
|
|
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: |
|
|
|
```bash |
|
python /content/transformers/examples/question-answering/run_squad.py \ |
|
--model_type electra \ |
|
--model_name_or_path 'mrm8488/electricidad-small-discriminator' \ |
|
--do_eval \ |
|
--do_train \ |
|
--do_lower_case \ |
|
--train_file '/content/dataset/train-v1.1-es.json' \ |
|
--predict_file '/content/dataset/dev-v1.1-es.json' \ |
|
--per_gpu_train_batch_size 16 \ |
|
--learning_rate 3e-5 \ |
|
--num_train_epochs 10 \ |
|
--max_seq_length 384 \ |
|
--doc_stride 128 \ |
|
--output_dir '/content/electricidad-small-finetuned-squadv1-es' \ |
|
--overwrite_output_dir \ |
|
--save_steps 1000 |
|
``` |
|
|
|
## Test set Results 🧾 |
|
|
|
| Metric | # Value | |
|
| ------ | --------- | |
|
| **EM** | **46.82** | |
|
| **F1** | **64.79** | |
|
|
|
```json |
|
{ |
|
'exact': 46.82119205298013, |
|
'f1': 64.79435260021918, |
|
'total': 10570, |
|
'HasAns_exact': 46.82119205298013, |
|
HasAns_f1': 64.79435260021918, |
|
'HasAns_total': 10570, |
|
'best_exact': 46.82119205298013, |
|
'best_exact_thresh': 0.0, |
|
'best_f1': 64.79435260021918, |
|
'best_f1_thresh': 0.0 |
|
} |
|
``` |
|
|
|
### Model in action 🚀 |
|
|
|
Fast usage with **pipelines**: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
qa_pipeline = pipeline( |
|
"question-answering", |
|
model="mrm8488/electricidad-small-finetuned-squadv1-es", |
|
tokenizer="mrm8488/electricidad-small-finetuned-squadv1-es" |
|
) |
|
|
|
context = "Manuel ha creado una versión del modelo Electra small en español que alcanza una puntuación F1 de 65 en el dataset SQUAD-es y sólo pesa 50 MB" |
|
|
|
q1 = "Cuál es su marcador F1?" |
|
q2 = "¿Cuál es el tamaño del modelo?" |
|
q3 = "¿Quién lo ha creado?" |
|
q4 = "¿Que es lo que ha hecho Manuel?" |
|
|
|
|
|
questions = [q1, q2, q3, q4] |
|
|
|
for question in questions: |
|
result = qa_pipeline({ |
|
'context': context, |
|
'question': question}) |
|
print(result) |
|
|
|
# Output: |
|
{'score': 0.14836778166355025, 'start': 98, 'end': 100, 'answer': '65'} |
|
{'score': 0.32219420810758237, 'start': 136, 'end': 140, 'answer': '50 MB'} |
|
{'score': 0.9672326951118713, 'start': 0, 'end': 6, 'answer': 'Manuel'} |
|
{'score': 0.23552458113848118, 'start': 10, 'end': 53, 'answer': 'creado una versión del modelo Electra small'} |
|
``` |
|
|
|
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) |
|
|
|
> Made with <span style="color: #e25555;">♥</span> in Spain |
|
|