metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: El hombre captura una pelota
sentences:
- Un hombre lanza una pelota en el aire.
- Un hombre está acompañando a una mujer en el camino.
- Dos mujeres están cantando una hermosa canción.
- source_sentence: La mujer está cortando papas.
sentences:
- Una mujer está cortando patatas.
- Los patos blancos se encuentran parados en el suelo.
- Hay una banda tocando en el escenario principal.
- source_sentence: Un hombre está buscando algo.
sentences:
- En un mercado de granjeros, se encuentra un hombre.
- Romney filmó en una reunión privada de financiadores
- Dos perros de color negro están jugando en la hierba.
- source_sentence: Un hombre saltando la cuerda.
sentences:
- Un hombre está saltando la cuerda.
- La capital de Siria fue golpeada por dos explosiones
- Los gatitos están comiendo de los platos.
- source_sentence: El avión está tocando tierra.
sentences:
- El avión animado se encuentra en proceso de aterrizaje.
- Un pequeño niño montado en un columpio en el parque.
- Una persona de sexo femenino está cortando una cebolla.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8382359637067547
name: Pearson Cosine
- type: spearman_cosine
value: 0.8429605562993187
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8336600898033378
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8448900621318144
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8328580183902631
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8441561677427524
name: Spearman Euclidean
- type: pearson_dot
value: 0.8287262441829462
name: Pearson Dot
- type: spearman_dot
value: 0.8322746204974042
name: Spearman Dot
- type: pearson_max
value: 0.8382359637067547
name: Pearson Max
- type: spearman_max
value: 0.8448900621318144
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8334610747047482
name: Pearson Cosine
- type: spearman_cosine
value: 0.8405630189692351
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8316848819512679
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8426142019940397
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8305903222472721
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8415256700272777
name: Spearman Euclidean
- type: pearson_dot
value: 0.8172993617433827
name: Pearson Dot
- type: spearman_dot
value: 0.823043401157181
name: Spearman Dot
- type: pearson_max
value: 0.8334610747047482
name: Pearson Max
- type: spearman_max
value: 0.8426142019940397
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8240056098321313
name: Pearson Cosine
- type: spearman_cosine
value: 0.8355774999921849
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8261458415991961
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8355100986320139
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.825647934422587
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8362336344962497
name: Spearman Euclidean
- type: pearson_dot
value: 0.7924886689283153
name: Pearson Dot
- type: spearman_dot
value: 0.7992788592975302
name: Spearman Dot
- type: pearson_max
value: 0.8261458415991961
name: Pearson Max
- type: spearman_max
value: 0.8362336344962497
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.8098656853945027
name: Pearson Cosine
- type: spearman_cosine
value: 0.8304511476467773
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8208946291392102
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8308359029901535
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8195023110971954
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8302481276550623
name: Spearman Euclidean
- type: pearson_dot
value: 0.7412744037070784
name: Pearson Dot
- type: spearman_dot
value: 0.7489986968697009
name: Spearman Dot
- type: pearson_max
value: 0.8208946291392102
name: Pearson Max
- type: spearman_max
value: 0.8308359029901535
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.7777717898212414
name: Pearson Cosine
- type: spearman_cosine
value: 0.8152005256760807
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8007095698339157
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8116493253806699
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8000905317852872
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8110794468804238
name: Spearman Euclidean
- type: pearson_dot
value: 0.6540905690432955
name: Pearson Dot
- type: spearman_dot
value: 0.6589924104221199
name: Spearman Dot
- type: pearson_max
value: 0.8007095698339157
name: Pearson Max
- type: spearman_max
value: 0.8152005256760807
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 32
type: sts-dev-32
metrics:
- type: pearson_cosine
value: 0.7276908730898617
name: Pearson Cosine
- type: spearman_cosine
value: 0.7805691037554072
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7659952363354546
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7751944660837697
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7674462214503804
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7773298298599879
name: Spearman Euclidean
- type: pearson_dot
value: 0.5395044219284906
name: Pearson Dot
- type: spearman_dot
value: 0.5341543426421572
name: Spearman Dot
- type: pearson_max
value: 0.7674462214503804
name: Pearson Max
- type: spearman_max
value: 0.7805691037554072
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 16
type: sts-dev-16
metrics:
- type: pearson_cosine
value: 0.6737235484120327
name: Pearson Cosine
- type: spearman_cosine
value: 0.7425360948217027
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7187007732867645
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7279621825071231
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7234911258158329
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7374355146279606
name: Spearman Euclidean
- type: pearson_dot
value: 0.44701957007430754
name: Pearson Dot
- type: spearman_dot
value: 0.44243975098384164
name: Spearman Dot
- type: pearson_max
value: 0.7234911258158329
name: Pearson Max
- type: spearman_max
value: 0.7425360948217027
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8637130740455785
name: Pearson Cosine
- type: spearman_cosine
value: 0.8774757245850818
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8739327947840198
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8771247494149252
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8742964420051067
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8774039769000851
name: Spearman Euclidean
- type: pearson_dot
value: 0.8587248460103846
name: Pearson Dot
- type: spearman_dot
value: 0.8692624735733635
name: Spearman Dot
- type: pearson_max
value: 0.8742964420051067
name: Pearson Max
- type: spearman_max
value: 0.8774757245850818
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8608902316971913
name: Pearson Cosine
- type: spearman_cosine
value: 0.8761454408181157
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8723366100239835
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8755119028724399
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8727143818945785
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8758699632438892
name: Spearman Euclidean
- type: pearson_dot
value: 0.8498181878456328
name: Pearson Dot
- type: spearman_dot
value: 0.8568165420931783
name: Spearman Dot
- type: pearson_max
value: 0.8727143818945785
name: Pearson Max
- type: spearman_max
value: 0.8761454408181157
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8546354043013908
name: Pearson Cosine
- type: spearman_cosine
value: 0.871536658256446
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8697716394077537
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8737030599161743
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.86989853825415
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8736845554686979
name: Spearman Euclidean
- type: pearson_dot
value: 0.8131428680674924
name: Pearson Dot
- type: spearman_dot
value: 0.8076436370339797
name: Spearman Dot
- type: pearson_max
value: 0.86989853825415
name: Pearson Max
- type: spearman_max
value: 0.8737030599161743
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8387977115140051
name: Pearson Cosine
- type: spearman_cosine
value: 0.8645489592292456
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8611375341227384
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8667215229295422
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.862154474303328
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8680162798983022
name: Spearman Euclidean
- type: pearson_dot
value: 0.7492475609746636
name: Pearson Dot
- type: spearman_dot
value: 0.7363955675375832
name: Spearman Dot
- type: pearson_max
value: 0.862154474303328
name: Pearson Max
- type: spearman_max
value: 0.8680162798983022
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.8168102869303625
name: Pearson Cosine
- type: spearman_cosine
value: 0.8585329796388539
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8518107264951738
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8606717941407515
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8533959511853835
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8623753165991692
name: Spearman Euclidean
- type: pearson_dot
value: 0.6646337116783656
name: Pearson Dot
- type: spearman_dot
value: 0.6473141838302237
name: Spearman Dot
- type: pearson_max
value: 0.8533959511853835
name: Pearson Max
- type: spearman_max
value: 0.8623753165991692
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 32
type: sts-test-32
metrics:
- type: pearson_cosine
value: 0.7813945227753345
name: Pearson Cosine
- type: spearman_cosine
value: 0.8424823964509079
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8315336527432531
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8431756901550471
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8345328653107531
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8466076672836096
name: Spearman Euclidean
- type: pearson_dot
value: 0.5520860449837447
name: Pearson Dot
- type: spearman_dot
value: 0.5319238671245338
name: Spearman Dot
- type: pearson_max
value: 0.8345328653107531
name: Pearson Max
- type: spearman_max
value: 0.8466076672836096
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 16
type: sts-test-16
metrics:
- type: pearson_cosine
value: 0.7198004009567176
name: Pearson Cosine
- type: spearman_cosine
value: 0.8072120165730962
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7805727606105963
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7997833060148871
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7879106231813758
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8090073332632988
name: Spearman Euclidean
- type: pearson_dot
value: 0.44957276876149327
name: Pearson Dot
- type: spearman_dot
value: 0.4411623904572447
name: Spearman Dot
- type: pearson_max
value: 0.7879106231813758
name: Pearson Max
- type: spearman_max
value: 0.8090073332632988
name: Spearman Max
SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on an augmented version of stsb_multi_es
dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e")
sentences = [
'El avión está tocando tierra.',
'El avión animado se encuentra en proceso de aterrizaje.',
'Un pequeño niño montado en un columpio en el parque.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8382 |
spearman_cosine |
0.843 |
pearson_manhattan |
0.8337 |
spearman_manhattan |
0.8449 |
pearson_euclidean |
0.8329 |
spearman_euclidean |
0.8442 |
pearson_dot |
0.8287 |
spearman_dot |
0.8323 |
pearson_max |
0.8382 |
spearman_max |
0.8449 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8335 |
spearman_cosine |
0.8406 |
pearson_manhattan |
0.8317 |
spearman_manhattan |
0.8426 |
pearson_euclidean |
0.8306 |
spearman_euclidean |
0.8415 |
pearson_dot |
0.8173 |
spearman_dot |
0.823 |
pearson_max |
0.8335 |
spearman_max |
0.8426 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.824 |
spearman_cosine |
0.8356 |
pearson_manhattan |
0.8261 |
spearman_manhattan |
0.8355 |
pearson_euclidean |
0.8256 |
spearman_euclidean |
0.8362 |
pearson_dot |
0.7925 |
spearman_dot |
0.7993 |
pearson_max |
0.8261 |
spearman_max |
0.8362 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8099 |
spearman_cosine |
0.8305 |
pearson_manhattan |
0.8209 |
spearman_manhattan |
0.8308 |
pearson_euclidean |
0.8195 |
spearman_euclidean |
0.8302 |
pearson_dot |
0.7413 |
spearman_dot |
0.749 |
pearson_max |
0.8209 |
spearman_max |
0.8308 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7778 |
spearman_cosine |
0.8152 |
pearson_manhattan |
0.8007 |
spearman_manhattan |
0.8116 |
pearson_euclidean |
0.8001 |
spearman_euclidean |
0.8111 |
pearson_dot |
0.6541 |
spearman_dot |
0.659 |
pearson_max |
0.8007 |
spearman_max |
0.8152 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7277 |
spearman_cosine |
0.7806 |
pearson_manhattan |
0.766 |
spearman_manhattan |
0.7752 |
pearson_euclidean |
0.7674 |
spearman_euclidean |
0.7773 |
pearson_dot |
0.5395 |
spearman_dot |
0.5342 |
pearson_max |
0.7674 |
spearman_max |
0.7806 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6737 |
spearman_cosine |
0.7425 |
pearson_manhattan |
0.7187 |
spearman_manhattan |
0.728 |
pearson_euclidean |
0.7235 |
spearman_euclidean |
0.7374 |
pearson_dot |
0.447 |
spearman_dot |
0.4424 |
pearson_max |
0.7235 |
spearman_max |
0.7425 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8637 |
spearman_cosine |
0.8775 |
pearson_manhattan |
0.8739 |
spearman_manhattan |
0.8771 |
pearson_euclidean |
0.8743 |
spearman_euclidean |
0.8774 |
pearson_dot |
0.8587 |
spearman_dot |
0.8693 |
pearson_max |
0.8743 |
spearman_max |
0.8775 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8609 |
spearman_cosine |
0.8761 |
pearson_manhattan |
0.8723 |
spearman_manhattan |
0.8755 |
pearson_euclidean |
0.8727 |
spearman_euclidean |
0.8759 |
pearson_dot |
0.8498 |
spearman_dot |
0.8568 |
pearson_max |
0.8727 |
spearman_max |
0.8761 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8546 |
spearman_cosine |
0.8715 |
pearson_manhattan |
0.8698 |
spearman_manhattan |
0.8737 |
pearson_euclidean |
0.8699 |
spearman_euclidean |
0.8737 |
pearson_dot |
0.8131 |
spearman_dot |
0.8076 |
pearson_max |
0.8699 |
spearman_max |
0.8737 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8388 |
spearman_cosine |
0.8645 |
pearson_manhattan |
0.8611 |
spearman_manhattan |
0.8667 |
pearson_euclidean |
0.8622 |
spearman_euclidean |
0.868 |
pearson_dot |
0.7492 |
spearman_dot |
0.7364 |
pearson_max |
0.8622 |
spearman_max |
0.868 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8168 |
spearman_cosine |
0.8585 |
pearson_manhattan |
0.8518 |
spearman_manhattan |
0.8607 |
pearson_euclidean |
0.8534 |
spearman_euclidean |
0.8624 |
pearson_dot |
0.6646 |
spearman_dot |
0.6473 |
pearson_max |
0.8534 |
spearman_max |
0.8624 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7814 |
spearman_cosine |
0.8425 |
pearson_manhattan |
0.8315 |
spearman_manhattan |
0.8432 |
pearson_euclidean |
0.8345 |
spearman_euclidean |
0.8466 |
pearson_dot |
0.5521 |
spearman_dot |
0.5319 |
pearson_max |
0.8345 |
spearman_max |
0.8466 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7198 |
spearman_cosine |
0.8072 |
pearson_manhattan |
0.7806 |
spearman_manhattan |
0.7998 |
pearson_euclidean |
0.7879 |
spearman_euclidean |
0.809 |
pearson_dot |
0.4496 |
spearman_dot |
0.4412 |
pearson_max |
0.7879 |
spearman_max |
0.809 |
Training Details
Training Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 2,697 training samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 8 tokens
- mean: 22.25 tokens
- max: 68 tokens
|
- min: 8 tokens
- mean: 22.01 tokens
- max: 79 tokens
|
- min: 0.0
- mean: 2.67
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha. |
Un ave de color amarillo descansaba tranquilamente en una rama. |
3.200000047683716 |
Una chica está tocando la flauta en un parque. |
Un grupo de músicos está tocando en un escenario al aire libre. |
1.286 |
La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece |
La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere |
4.199999809265137 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 697 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 8 tokens
- mean: 22.76 tokens
- max: 67 tokens
|
- min: 7 tokens
- mean: 22.26 tokens
- max: 63 tokens
|
- min: 0.0
- mean: 2.3
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas. |
Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos. |
4.199999809265137 |
"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud" |
"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar." |
3.5 |
El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario. |
Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida. |
3.691999912261963 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 5
warmup_ratio
: 0.1
fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-16_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-32_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-16_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-32_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.5917 |
100 |
30.7503 |
30.6172 |
0.8117 |
0.7110 |
0.8179 |
0.7457 |
0.8244 |
0.7884 |
0.8252 |
- |
- |
- |
- |
- |
- |
- |
1.1834 |
200 |
30.4696 |
32.6422 |
0.7952 |
0.7198 |
0.8076 |
0.7491 |
0.8125 |
0.7813 |
0.8142 |
- |
- |
- |
- |
- |
- |
- |
1.7751 |
300 |
29.9233 |
31.5469 |
0.8152 |
0.7435 |
0.8250 |
0.7737 |
0.8302 |
0.8006 |
0.8305 |
- |
- |
- |
- |
- |
- |
- |
2.3669 |
400 |
29.0716 |
31.8088 |
0.8183 |
0.7405 |
0.8248 |
0.7758 |
0.8299 |
0.8057 |
0.8324 |
- |
- |
- |
- |
- |
- |
- |
2.9586 |
500 |
28.7971 |
32.6032 |
0.8176 |
0.7430 |
0.8241 |
0.7777 |
0.8289 |
0.8025 |
0.8316 |
- |
- |
- |
- |
- |
- |
- |
3.5503 |
600 |
27.4766 |
34.7911 |
0.8241 |
0.7400 |
0.8314 |
0.7730 |
0.8369 |
0.8061 |
0.8394 |
- |
- |
- |
- |
- |
- |
- |
4.1420 |
700 |
27.0639 |
35.7418 |
0.8294 |
0.7466 |
0.8354 |
0.7784 |
0.8389 |
0.8107 |
0.8409 |
- |
- |
- |
- |
- |
- |
- |
4.7337 |
800 |
26.5119 |
36.2014 |
0.8305 |
0.7425 |
0.8356 |
0.7806 |
0.8406 |
0.8152 |
0.8430 |
- |
- |
- |
- |
- |
- |
- |
5.0 |
845 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.8645 |
0.8072 |
0.8715 |
0.8425 |
0.8761 |
0.8585 |
0.8775 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}