fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of xlm-roberta-large on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8090
- Exact Match: 74.0838
- F1: 80.8517
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.1945 |
0.49 |
36 |
2.3430 |
50.0 |
50.0 |
3.5404 |
0.98 |
72 |
1.8265 |
48.5602 |
52.5772 |
1.9365 |
1.48 |
108 |
1.2750 |
59.4241 |
67.2505 |
1.9365 |
1.97 |
144 |
1.0492 |
66.0995 |
73.9501 |
1.2265 |
2.46 |
180 |
0.9042 |
69.7644 |
77.5779 |
0.9482 |
2.95 |
216 |
0.8393 |
71.2042 |
78.9342 |
0.7866 |
3.45 |
252 |
0.8805 |
70.8115 |
78.2310 |
0.7866 |
3.94 |
288 |
0.9333 |
69.5026 |
76.5121 |
0.6871 |
4.44 |
324 |
0.8045 |
75.3927 |
82.4815 |
0.6086 |
4.92 |
360 |
0.7908 |
75.5236 |
81.8859 |
0.6086 |
5.42 |
396 |
0.8351 |
73.0366 |
80.3624 |
0.5449 |
5.91 |
432 |
0.8090 |
74.0838 |
80.8517 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2