Edit model card

Model

This model has been fine-tuned based on Meta-Llama/Meta-Llama-3-8B-Instruct using the mlx-lm with a cleaned-up function calling dataset that removed invalid JSON data and single quotes around argument values.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "mzbac/llama-3-8B-Instruct-function-calling-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    
)

tool = {
            "name": "search_web",
            "description": "Perform a web search for a given search terms.",
            "parameter": {
                "type": "object", 
                "properties": {
                    "search_terms": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "The search queries for which the search is performed.",
                    "required": True,
                    }
                }
            },
        }

messages = [
            {
                "role": "system",
                "content": f"You are a helpful assistant with access to the following functions. Use them if required - {str(tool)}",
            },
            {"role": "user", "content": "Today's news in Melbourne, just for your information, today is April 27, 2014."},
        ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.1,
)
response = outputs[0]
print(tokenizer.decode(response))

# <|begin_of_text|><|start_header_id|>system<|end_header_id|>

# You are a helpful assistant with access to the following functions. Use them if required - {'name':'search_web', 'description': 'Perform a web search for a given search terms.', 'parameter': {'type': 'object', 'properties': {'search_terms': {'type': 'array', 'items': {'type':'string'}, 'description': 'The search queries for which the search is performed.','required': True}}}}<|eot_id|><|start_header_id|>user<|end_header_id|>

# Today's news in Melbourne, just for your information, today is April 27, 2014.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

# <functioncall> {"name": "search_web", "arguments": {"search_terms": ["Melbourne news", "April 27, 2014"]}}<|eot_id|>
Downloads last month
495
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mzbac/llama-3-8B-Instruct-function-calling-v0.2

Finetunes
6 models
Merges
1 model
Quantizations
7 models

Dataset used to train mzbac/llama-3-8B-Instruct-function-calling-v0.2

Spaces using mzbac/llama-3-8B-Instruct-function-calling-v0.2 5