Edit model card

Intro

Activation Beacon is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts.

Environment

pip install transformers
pip install flash-attn --no-build-isolation

Usage

import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "namespace-Pt/beacon-qwen-2-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    trust_remote_code=True, 
    torch_dtype=torch.bfloat16, 
    attn_implementation="flash_attention_2"
)

model = model.cuda().eval()

with torch.no_grad():
  # short context
  messages = [{"role": "user", "content": "Tell me about yourself."}]
  inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
  outputs = model.generate(**inputs, max_new_tokens=50)
  print(f"Input Length: {inputs['input_ids'].shape[1]}")
  print(f"Output:       {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}")

  # reset memory before new generation task
  model.memory.reset()

  # long context
  with open("infbench.json", encoding="utf-8") as f:
    example = json.load(f)
  messages = [{"role": "user", "content": example["context"]}]
  inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
  outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
  print("*"*20)
  print(f"Input Length: {inputs['input_ids'].shape[1]}")
  print(f"Answers:      {example['answer']}")
  print(f"Prediction:   {tokenizer.decode(outputs[0], skip_special_tokens=True)}")

NOTE: It's okay to see warnings like This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all. Just ignore it.

Downloads last month
1,076
Safetensors
Model size
8.08B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.