Introduction
The model was trained to translate a single sentence from English to Korean with a 1.18M dataset in the general domain. Dataset: nayohan/aihub-en-ko-translation-1.2m
Loading the Model
Use the following Python code to load the model:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nayohan/llama3-8b-it-translation-general-en-ko-1sent"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16
)
Generating Text
To generate text, use the following Python code: Currently, this model only support English to Korean, not other languages or reverse and styles.
style="written"
SYSTEM_PROMPT=f"Acts as a translator. Translate en sentences into ko sentences in {style} style."
s = "The aerospace industry is a flower in the field of technology and science."
conversation = [{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': s}]
inputs = tokenizer.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_tensors='pt'
).to("cuda")
outputs = model.generate(inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0][len(inputs[0]):]))
# Result
# INPUT: <|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nActs as a translator. Translate en sentences into ko sentences in colloquial style.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nThe aerospace industry is a flower in the field of technology and science.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n
# OUTPUT: 항공 우주 산업은 기술과 과학의 꽃입니다.<|eot_id|>
# INPUT: <|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nActs as a translator. Translate en sentences into ko sentences in colloquial style.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n
Technical and basic sciences are very important in terms of research. It has a significant impact on the industrial development of a country. Government policies control the research budget.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n
# OUTPUT: 기술과 기초과학은 연구 측면에서 매우 중요합니다. 한 국가의 산업 발전에 큰 영향을 미칩니다. 정부 정책은 연구 예산을 통제합니다.<|eot_id|>
Citation
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url={https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
Our trainig code can be found here: [TBD]
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.