Transformers
Inference Endpoints
File size: 12,840 Bytes
f664757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8582e
 
 
f664757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
import math
from functools import partial
from typing import Callable, Final, Optional, Sequence

import torch
from torch import Tensor, nn
from torch.nn import functional as F

from .common import ensure_tuple, get_act_layer, use_fused_attn


def vit_weights_init(module: nn.Module) -> None:
    if isinstance(module, nn.Linear):
        nn.init.trunc_normal_(module.weight, std=0.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.LayerNorm):
        nn.init.ones_(module.weight)
        nn.init.zeros_(module.bias)


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x: Tensor) -> Tensor:
        if self.drop_prob == 0 or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor

    def extra_repr(self):
        return f"drop_prob={self.drop_prob:0.3f}"


class Mlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: Callable[[], nn.Module] = nn.GELU,
        drop: float = 0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop) if drop > 0.0 else nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_scale: Optional[float] = None,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = qk_scale or self.head_dim**-0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop) if attn_drop > 0.0 else nn.Identity()
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        B, N, C = x.shape
        qkv: Tensor = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        if self.fused_attn:
            dropout_p = getattr(self.attn_drop, "p", 0.0) if self.training else 0.0
            x = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        drop_path: float = 0.0,
        act_layer: Callable[[], nn.Module] = nn.GELU,
        norm_layer: Callable[[], nn.Module] = nn.LayerNorm,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, x: Tensor) -> Tensor:
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(
        self,
        img_size: int | tuple[int, int] = 224,
        patch_size: int | tuple[int, int] = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
        bias: bool = True,
        dynamic_pad: bool = False,
    ):
        super().__init__()
        self.img_size = ensure_tuple(img_size, 2)
        self.patch_size = ensure_tuple(patch_size, 2)
        self.num_patches = (self.img_size[0] // self.patch_size[0]) * (self.img_size[1] // self.patch_size[1])

        self.dynamic_pad = dynamic_pad

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)

    def forward(self, x: Tensor) -> Tensor:
        _, _, H, W = x.shape
        if self.dynamic_pad:
            pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
            pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
            x = F.pad(x, (0, pad_w, 0, pad_h))
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        return x


class VisionTransformer(nn.Module):
    """Vision Transformer"""

    def __init__(
        self,
        img_size: int | tuple[int, int] = 224,
        patch_size: int | tuple[int, int] = 16,
        in_chans: int = 3,
        num_classes: int = 0,
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        pre_norm: bool = False,
        drop_rate: float = 0.0,
        attn_drop_rate: float = 0.0,
        drop_path_rate: float = 0.0,
        norm_layer: Callable[[], nn.Module] = nn.LayerNorm,
        act_layer: Callable[[], nn.Module] = nn.GELU,
        skip_init: bool = False,
        dynamic_pad: bool = False,
        **kwargs,
    ):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim
        self.depth = depth

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            dynamic_pad=dynamic_pad,
        )
        num_patches = self.patch_embed.num_patches
        embed_len = num_patches + 1  # num_patches + 1 for the [CLS] token

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, embed_len, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate) if drop_rate > 0.0 else nn.Identity()
        self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)]  # stochastic depth decay rule
        self.blocks: list[Block] = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                )
                for i in range(self.depth)
            ]
        )
        self.norm = norm_layer(embed_dim)

        # Classifier head
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if not skip_init:
            self.reset_parameters()

    def reset_parameters(self):
        nn.init.trunc_normal_(self.cls_token, std=0.02)
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        self.apply(vit_weights_init)

    def interpolate_pos_encoding(self, x: Tensor, w: Tensor, h: Tensor) -> Tensor:
        npatch = x.shape[1] - 1
        N = self.pos_embed.shape[1] - 1
        if npatch == N and w == h:
            return self.pos_embed
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        dim = x.shape[-1]
        w0 = w // self.patch_embed.patch_size[0]
        h0 = h // self.patch_embed.patch_size[0]
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + 0.1, h0 + 0.1
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
            scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
            mode="bicubic",
        )
        if int(w0) != patch_pos_embed.shape[-2] or int(h0) != patch_pos_embed.shape[-1]:
            raise ValueError("Error in positional encoding interpolation.")
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def prepare_tokens(self, x: Tensor) -> Tensor:
        B, _, W, H = x.shape
        x = self.patch_embed(x)  # patch linear embedding

        # add the [CLS] token to the embed patch tokens
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add positional encoding to each token
        x = x + self.interpolate_pos_encoding(x, W, H)

        return self.pos_drop(x)

    def forward(self, x: Tensor, norm: bool = True) -> Tensor:
        x = self.forward_features(x, norm=norm)
        x = self.forward_head(x)
        return x

    def forward_features(self, x: Tensor, norm: bool = True) -> Tensor:
        x = self.prepare_tokens(x)
        x = self.norm_pre(x)
        for blk in self.blocks:
            x = blk(x)
        if norm:
            x = self.norm(x)
        return x[:, 0]

    def forward_head(self, x: Tensor) -> Tensor:
        x = self.head(x)
        return x

    def get_intermediate_layers(
        self,
        x: Tensor,
        n: int | Sequence[int] = 1,
        norm: bool = True,
    ) -> list[Tensor]:
        # we return the output tokens from the `n` last blocks
        outputs = []
        layer_indices = set(range(self.depth - n, self.depth) if isinstance(n, int) else n)
        x = self.prepare_tokens(x)
        x = self.norm_pre(x)

        for idx, blk in enumerate(self.blocks):
            x = blk(x)
            if idx in layer_indices:
                outputs.append(x)
        if norm:
            outputs = [self.norm(x) for x in outputs]
        return outputs


def vit_base_dreamsim(
    patch_size: int = 16,
    layer_norm_eps: float = 1e-6,
    num_classes: int = 512,
    act_layer: str | Callable[[], nn.Module] = "gelu",
    **kwargs,
):
    if isinstance(act_layer, str):
        act_layer = get_act_layer(act_layer)

    model = VisionTransformer(
        patch_size=patch_size,
        num_classes=num_classes,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=layer_norm_eps),
        act_layer=act_layer,
        **kwargs,
    )
    return model