onizukal's picture
End of training
ed05cbb verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6532717893021993

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0645
  • Accuracy: 0.6533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1014 1.0 924 1.1155 0.6131
0.917 2.0 1848 1.0767 0.6242
0.7533 3.0 2772 1.0565 0.6473
0.493 4.0 3696 1.1952 0.6530
0.482 5.0 4620 1.3688 0.6473
0.1989 6.0 5544 1.6284 0.6435
0.1622 7.0 6468 2.0114 0.6373
0.0666 8.0 7392 2.2124 0.6541
0.0417 9.0 8316 2.4424 0.6389
0.0196 10.0 9240 2.5614 0.6397
0.0323 11.0 10164 2.8070 0.6443
0.0014 12.0 11088 2.8503 0.6506
0.001 13.0 12012 2.8885 0.6497
0.0706 14.0 12936 3.0224 0.6462
0.0003 15.0 13860 3.0064 0.6465
0.0013 16.0 14784 3.0115 0.6552
0.0316 17.0 15708 3.0514 0.6563
0.0002 18.0 16632 3.0348 0.6568
0.0 19.0 17556 3.0737 0.6508
0.0494 20.0 18480 3.0645 0.6533

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1