neurips-2023-llm-efficiency
Collection
Fine-tune models, datasets and artifacts used for llm efficiency competition.
https://llm-efficiency-challenge.github.io/challenge
•
15 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-2-13b-hf on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7438 | 0.01 | 20 | 0.6827 |
0.8518 | 0.01 | 40 | 0.6707 |
0.6798 | 0.02 | 60 | 0.6511 |
0.7868 | 0.03 | 80 | 0.6231 |
0.8218 | 0.04 | 100 | 0.6232 |
0.6862 | 0.04 | 120 | 0.6324 |
0.4989 | 0.05 | 140 | 0.6007 |
0.6064 | 0.06 | 160 | 0.6127 |
0.5355 | 0.06 | 180 | 0.6297 |
0.6274 | 0.07 | 200 | 0.6211 |
0.5512 | 0.08 | 220 | 0.6290 |
0.727 | 0.08 | 240 | 0.6028 |
0.5253 | 0.09 | 260 | 0.5971 |
0.7679 | 0.1 | 280 | 0.5908 |
0.4804 | 0.11 | 300 | 0.6154 |
0.5801 | 0.11 | 320 | 0.5968 |
0.3603 | 0.12 | 340 | 0.7127 |
0.5948 | 0.13 | 360 | 0.5911 |
0.7988 | 0.13 | 380 | 0.6060 |
0.6002 | 0.14 | 400 | 0.6303 |
0.5522 | 0.15 | 420 | 0.6124 |
0.558 | 0.16 | 440 | 0.6061 |
0.393 | 0.16 | 460 | 0.6050 |
0.739 | 0.17 | 480 | 0.5977 |
0.6462 | 0.18 | 500 | 0.5904 |
0.5305 | 0.18 | 520 | 0.5852 |
0.4749 | 0.19 | 540 | 0.5974 |
0.832 | 0.2 | 560 | 0.5918 |
0.7155 | 0.21 | 580 | 0.5857 |
0.7374 | 0.21 | 600 | 0.6092 |
1.2165 | 0.22 | 620 | 0.6071 |
0.4901 | 0.23 | 640 | 0.5908 |
0.4585 | 0.23 | 660 | 0.6041 |
0.6474 | 0.24 | 680 | 0.5984 |
0.4136 | 0.25 | 700 | 0.5860 |
0.602 | 0.25 | 720 | 0.6251 |
0.405 | 0.26 | 740 | 0.6182 |
0.5059 | 0.27 | 760 | 0.5894 |
0.4249 | 0.28 | 780 | 0.5800 |
0.4847 | 0.28 | 800 | 0.5805 |
0.4709 | 0.29 | 820 | 0.6140 |
0.4279 | 0.3 | 840 | 0.5877 |
0.7142 | 0.3 | 860 | 0.5801 |
1.0536 | 0.31 | 880 | 0.6102 |
0.694 | 0.32 | 900 | 0.5812 |
0.5034 | 0.33 | 920 | 0.5833 |
0.4208 | 0.33 | 940 | 0.5803 |
0.5917 | 0.34 | 960 | 0.5756 |
0.4655 | 0.35 | 980 | 0.5706 |
0.4274 | 0.35 | 1000 | 0.5675 |
0.3711 | 0.36 | 1020 | 0.5791 |
0.6792 | 0.37 | 1040 | 0.5773 |
0.3607 | 0.38 | 1060 | 0.5838 |
0.5336 | 0.38 | 1080 | 0.5744 |
0.5509 | 0.39 | 1100 | 0.5854 |
0.2759 | 0.4 | 1120 | 0.5675 |
0.5058 | 0.4 | 1140 | 0.5790 |
0.4446 | 0.41 | 1160 | 0.5893 |
0.4757 | 0.42 | 1180 | 0.5764 |
0.4153 | 0.42 | 1200 | 0.5707 |
0.5369 | 0.43 | 1220 | 0.5729 |
0.4785 | 0.44 | 1240 | 0.5735 |
0.4335 | 0.45 | 1260 | 0.5821 |
0.5452 | 0.45 | 1280 | 0.5621 |
0.3461 | 0.46 | 1300 | 0.5615 |
0.5579 | 0.47 | 1320 | 0.5769 |
0.6048 | 0.47 | 1340 | 0.5855 |
0.6253 | 0.48 | 1360 | 0.5590 |
0.5084 | 0.49 | 1380 | 0.5822 |
0.3838 | 0.5 | 1400 | 0.5604 |
0.667 | 0.5 | 1420 | 0.5622 |
0.681 | 0.51 | 1440 | 0.5632 |
0.3593 | 0.52 | 1460 | 0.5578 |
0.4509 | 0.52 | 1480 | 0.5609 |
0.4752 | 0.53 | 1500 | 0.5494 |
0.3152 | 0.54 | 1520 | 0.5541 |
0.3699 | 0.55 | 1540 | 0.5449 |
0.3009 | 0.55 | 1560 | 0.5656 |
0.2867 | 0.56 | 1580 | 0.5499 |
0.7261 | 0.57 | 1600 | 0.5490 |
0.5149 | 0.57 | 1620 | 0.5565 |
0.473 | 0.58 | 1640 | 0.5445 |
0.9732 | 0.59 | 1660 | 0.5505 |
0.9606 | 0.59 | 1680 | 0.5471 |
0.2714 | 0.6 | 1700 | 0.5651 |
0.4927 | 0.61 | 1720 | 0.5527 |
0.6928 | 0.62 | 1740 | 0.5433 |
0.3776 | 0.62 | 1760 | 0.5507 |
0.4636 | 0.63 | 1780 | 0.5443 |
0.43 | 0.64 | 1800 | 0.5527 |
0.5656 | 0.64 | 1820 | 0.5478 |
0.729 | 0.65 | 1840 | 0.5542 |
0.4355 | 0.66 | 1860 | 0.5411 |
0.377 | 0.67 | 1880 | 0.5426 |
0.5345 | 0.67 | 1900 | 0.5434 |
0.4042 | 0.68 | 1920 | 0.5383 |
0.3676 | 0.69 | 1940 | 0.5372 |
0.4758 | 0.69 | 1960 | 0.5411 |
0.4919 | 0.7 | 1980 | 0.5353 |
0.2312 | 0.71 | 2000 | 0.5351 |
0.7224 | 0.71 | 2020 | 0.5364 |
0.3617 | 0.72 | 2040 | 0.5357 |
0.8601 | 0.73 | 2060 | 0.5402 |
0.3218 | 0.74 | 2080 | 0.5309 |
0.3611 | 0.74 | 2100 | 0.5412 |
0.4466 | 0.75 | 2120 | 0.5432 |
0.5551 | 0.76 | 2140 | 0.5345 |
0.4047 | 0.76 | 2160 | 0.5321 |
0.4624 | 0.77 | 2180 | 0.5357 |
0.5704 | 0.78 | 2200 | 0.5325 |
0.715 | 0.79 | 2220 | 0.5313 |
0.4913 | 0.79 | 2240 | 0.5300 |
0.3605 | 0.8 | 2260 | 0.5294 |
0.234 | 0.81 | 2280 | 0.5318 |
0.6128 | 0.81 | 2300 | 0.5365 |
0.236 | 0.82 | 2320 | 0.5342 |
0.3503 | 0.83 | 2340 | 0.5348 |
0.4874 | 0.84 | 2360 | 0.5313 |
0.5999 | 0.84 | 2380 | 0.5312 |
0.2757 | 0.85 | 2400 | 0.5292 |
0.322 | 0.86 | 2420 | 0.5299 |
0.4368 | 0.86 | 2440 | 0.5318 |
0.318 | 0.87 | 2460 | 0.5319 |
0.7192 | 0.88 | 2480 | 0.5307 |
0.3465 | 0.88 | 2500 | 0.5315 |
0.4098 | 0.89 | 2520 | 0.5312 |
0.682 | 0.9 | 2540 | 0.5308 |
1.4551 | 0.91 | 2560 | 0.5310 |
0.4396 | 0.91 | 2580 | 0.5301 |
0.5932 | 0.92 | 2600 | 0.5298 |
0.3978 | 0.93 | 2620 | 0.5292 |
0.2823 | 0.93 | 2640 | 0.5296 |
0.4293 | 0.94 | 2660 | 0.5294 |
0.4646 | 0.95 | 2680 | 0.5296 |
0.8203 | 0.96 | 2700 | 0.5295 |
0.351 | 0.96 | 2720 | 0.5299 |
0.328 | 0.97 | 2740 | 0.5292 |
0.3347 | 0.98 | 2760 | 0.5302 |
0.2608 | 0.98 | 2780 | 0.5296 |
0.4274 | 0.99 | 2800 | 0.5294 |
0.3349 | 1.0 | 2820 | 0.5302 |
Base model
meta-llama/Llama-2-13b-hf