Edit model card

Sentiment-google-t5-v1_1-small-intra_model

This model is a fine-tuned version of google/t5-v1_1-small on the None dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9960
  • Loss: 0.6597
  • Losses: [1, 0.8, 1, 1, 0.8, 1.0, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Train Loss Validation Loss Losses
6.2162 1.0 176 0.9978 4.7370 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1.0, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1]
1.3241 2.0 352 0.9904 0.7439 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1.0, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 0.8, 1.0, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 0.8, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 0.8, 1, 0.8, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1]
0.9467 3.0 528 0.9895 0.5884 [1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1.0, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 0.8, 1.0, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1.0, 0.8, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.8, 0.8, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 1.0, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1.0, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1]
0.7696 4.0 704 0.9941 0.5461 [1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1]
0.7244 5.0 880 0.9947 0.5184 [1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1]
0.6584 6.0 1056 0.9947 0.5142 [1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1]

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.6.1
  • Tokenizers 0.14.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for owanr/Sentiment-google-t5-v1_1-small-intra_model

Finetuned
(11)
this model