metadata
license: apache-2.0
base_model: google/siglip-so400m-patch14-384
tags:
- generated_from_trainer
- siglip
metrics:
- accuracy
- f1
model-index:
- name: siglip-tagger-test-3
results: []
siglip-tagger-test-3
This model is a fine-tuned version of google/siglip-so400m-patch14-384 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 692.4745
- Accuracy: 0.3465
- F1: 0.9969
Model description
This model is an experimental model that predicts danbooru tags of images.
Example
Use a pipeline
from transformers import pipeline
pipe = pipeline("image-classification", model="p1atdev/siglip-tagger-test-3", trust_remote_code=True)
pipe(
"image.jpg", # takes str(path) or numpy array or PIL images as input
threshold=0.5, #optional parameter defaults to 0
return_scores = False #optional parameter defaults to False
)
threshold
: confidence intervale, if it's specified, the pipeline will only return tags with a confidence >= thresholdreturn_scores
: if specified the pipeline will return the labels and their confidences in a dictionary format.
Load model directly
from PIL import Image
import torch
from transformers import (
AutoModelForImageClassification,
AutoImageProcessor,
)
import numpy as np
MODEL_NAME = "p1atdev/siglip-tagger-test-3"
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True
)
model.eval()
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
image = Image.open("sample.jpg") # load your image
inputs = processor(image, return_tensors="pt").to(model.device, model.dtype)
logits = model(**inputs).logits.detach().cpu().float()[0]
logits = np.clip(logits, 0.0, 1.0)
results = {
model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
}
results = sorted(results.items(), key=lambda x: x[1], reverse=True)
for tag, score in results:
print(f"{tag}: {score*100:.2f}%")
Intended uses & limitations
This model is for research use only and is not recommended for production.
Please use wd-v1-4-tagger series by SmilingWolf:
etc.
Training and evaluation data
High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500. (Same as p1atdev/siglip-tagger-test-2)
Name | Description |
---|---|
Images count | 5000 |
Supported tags | 9517 general tags. Character and rating tags are not included. See all labels in config.json |
Image rating | 4000 for general and 1000 for sensitive,questionable,explicit |
Copyright tags | original only |
Image score range (on search) | min:10, max150 |
Training procedure
- Loss function: AsymmetricLossOptimized (Asymmetric Loss)
gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1066.981 | 1.0 | 71 | 1873.5417 | 0.1412 | 0.9939 |
547.3158 | 2.0 | 142 | 934.3269 | 0.1904 | 0.9964 |
534.6942 | 3.0 | 213 | 814.0771 | 0.2170 | 0.9966 |
414.1278 | 4.0 | 284 | 774.0230 | 0.2398 | 0.9967 |
365.4994 | 5.0 | 355 | 751.2046 | 0.2459 | 0.9967 |
352.3663 | 6.0 | 426 | 735.6580 | 0.2610 | 0.9967 |
414.3976 | 7.0 | 497 | 723.2065 | 0.2684 | 0.9968 |
350.8201 | 8.0 | 568 | 714.0453 | 0.2788 | 0.9968 |
364.5016 | 9.0 | 639 | 706.5261 | 0.2890 | 0.9968 |
309.1184 | 10.0 | 710 | 700.7808 | 0.2933 | 0.9968 |
288.5186 | 11.0 | 781 | 695.7027 | 0.3008 | 0.9968 |
287.4452 | 12.0 | 852 | 691.5306 | 0.3037 | 0.9968 |
280.9088 | 13.0 | 923 | 688.8063 | 0.3084 | 0.9969 |
296.8389 | 14.0 | 994 | 686.1077 | 0.3132 | 0.9968 |
265.1467 | 15.0 | 1065 | 683.7382 | 0.3167 | 0.9969 |
268.5263 | 16.0 | 1136 | 682.1683 | 0.3206 | 0.9969 |
309.7871 | 17.0 | 1207 | 681.1995 | 0.3199 | 0.9969 |
307.6475 | 18.0 | 1278 | 680.1700 | 0.3230 | 0.9969 |
262.0677 | 19.0 | 1349 | 679.2177 | 0.3270 | 0.9969 |
275.3823 | 20.0 | 1420 | 678.9730 | 0.3294 | 0.9969 |
273.984 | 21.0 | 1491 | 678.6031 | 0.3318 | 0.9969 |
273.5361 | 22.0 | 1562 | 678.1285 | 0.3332 | 0.9969 |
279.6474 | 23.0 | 1633 | 678.4264 | 0.3348 | 0.9969 |
232.5045 | 24.0 | 1704 | 678.3773 | 0.3357 | 0.9969 |
269.621 | 25.0 | 1775 | 678.4922 | 0.3372 | 0.9969 |
289.8389 | 26.0 | 1846 | 679.0094 | 0.3397 | 0.9969 |
256.7373 | 27.0 | 1917 | 679.5618 | 0.3407 | 0.9969 |
262.3969 | 28.0 | 1988 | 680.1168 | 0.3414 | 0.9969 |
266.2439 | 29.0 | 2059 | 681.0101 | 0.3421 | 0.9969 |
247.7932 | 30.0 | 2130 | 681.9800 | 0.3422 | 0.9969 |
246.8083 | 31.0 | 2201 | 682.8550 | 0.3416 | 0.9969 |
270.827 | 32.0 | 2272 | 683.9250 | 0.3434 | 0.9969 |
256.4384 | 33.0 | 2343 | 685.0451 | 0.3448 | 0.9969 |
270.461 | 34.0 | 2414 | 686.2427 | 0.3439 | 0.9969 |
253.8104 | 35.0 | 2485 | 687.4274 | 0.3441 | 0.9969 |
265.532 | 36.0 | 2556 | 688.4856 | 0.3451 | 0.9969 |
249.1426 | 37.0 | 2627 | 689.5027 | 0.3457 | 0.9969 |
229.5651 | 38.0 | 2698 | 690.4455 | 0.3455 | 0.9969 |
251.9008 | 39.0 | 2769 | 691.2324 | 0.3463 | 0.9969 |
281.8228 | 40.0 | 2840 | 691.7993 | 0.3464 | 0.9969 |
242.5272 | 41.0 | 2911 | 692.1788 | 0.3465 | 0.9969 |
229.5605 | 42.0 | 2982 | 692.3799 | 0.3465 | 0.9969 |
245.0876 | 43.0 | 3053 | 692.4745 | 0.3465 | 0.9969 |
271.22 | 44.0 | 3124 | 692.5084 | 0.3465 | 0.9969 |
244.3045 | 45.0 | 3195 | 692.5108 | 0.3465 | 0.9969 |
243.9542 | 46.0 | 3266 | 692.5128 | 0.3465 | 0.9969 |
274.6664 | 47.0 | 3337 | 692.5095 | 0.3465 | 0.9969 |
231.1361 | 48.0 | 3408 | 692.5107 | 0.3465 | 0.9969 |
274.5513 | 49.0 | 3479 | 692.5108 | 0.3465 | 0.9969 |
316.0833 | 50.0 | 3550 | 692.5107 | 0.3465 | 0.9969 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0