|
--- |
|
license: apache-2.0 |
|
base_model: google/siglip-so400m-patch14-384 |
|
tags: |
|
- generated_from_trainer |
|
- siglip |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: siglip-tagger-test-3 |
|
results: [] |
|
--- |
|
|
|
# siglip-tagger-test-3 |
|
|
|
This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 692.4745 |
|
- Accuracy: 0.3465 |
|
- F1: 0.9969 |
|
|
|
## Model description |
|
|
|
This model is an experimental model that predicts danbooru tags of images. |
|
|
|
## Example |
|
```py |
|
from transformers import pipeline |
|
pipe = pipeline("image-classification",model="p1atdev/siglip-tagger-test-3",revision="refs/pr/2",trust_remote_code=True) |
|
pipe("image.jpg", # takes str(path) or numpy array or PIL images as input |
|
threshold=0.5, #optional parameter defaults to 0 |
|
return_scores = False #optional parameter defaults to False |
|
) |
|
``` |
|
* `threshold`: confidence intervale, if it's specified, the pipeline will only return tags with a confidence >= threshold |
|
* `return_scores`: if specified the pipeline will return the labels and their confidences in a dictionary format. |
|
|
|
```py |
|
from PIL import Image |
|
import torch |
|
|
|
from transformers import ( |
|
AutoModelForImageClassification, |
|
AutoImageProcessor, |
|
) |
|
|
|
import numpy as np |
|
|
|
MODEL_NAME = "p1atdev/siglip-tagger-test-3" |
|
|
|
model = AutoModelForImageClassification.from_pretrained( |
|
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True |
|
) |
|
model.eval() |
|
processor = AutoImageProcessor.from_pretrained(MODEL_NAME) |
|
|
|
image = Image.open("sample.jpg") # load your image |
|
|
|
inputs = processor(image, return_tensors="pt").to(model.device, model.dtype) |
|
|
|
logits = model(**inputs).logits.detach().cpu().float()[0] |
|
logits = np.clip(logits, 0.0, 1.0) |
|
|
|
results = { |
|
model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0 |
|
} |
|
results = sorted(results.items(), key=lambda x: x[1], reverse=True) |
|
|
|
for tag, score in results: |
|
print(f"{tag}: {score*100:.2f}%") |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
This model is for research use only and is not recommended for production. |
|
|
|
Please use wd-v1-4-tagger series by SmilingWolf: |
|
|
|
- [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2) |
|
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2) |
|
|
|
etc. |
|
|
|
|
|
## Training and evaluation data |
|
|
|
High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500. (Same as p1atdev/siglip-tagger-test-2) |
|
|
|
|Name|Description| |
|
|-|-| |
|
|Images count|5000| |
|
|Supported tags|9517 general tags. Character and rating tags are not included. See all labels in [config.json](config.json)| |
|
|Image rating|4000 for `general` and 1000 for `sensitive,questionable,explicit`| |
|
|Copyright tags|`original` only| |
|
|Image score range (on search)|min:10, max150| |
|
|
|
## Training procedure |
|
|
|
- Loss function: AsymmetricLossOptimized ([Asymmetric Loss](https://github.com/Alibaba-MIIL/ASL)) |
|
- `gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1066.981 | 1.0 | 71 | 1873.5417 | 0.1412 | 0.9939 | |
|
| 547.3158 | 2.0 | 142 | 934.3269 | 0.1904 | 0.9964 | |
|
| 534.6942 | 3.0 | 213 | 814.0771 | 0.2170 | 0.9966 | |
|
| 414.1278 | 4.0 | 284 | 774.0230 | 0.2398 | 0.9967 | |
|
| 365.4994 | 5.0 | 355 | 751.2046 | 0.2459 | 0.9967 | |
|
| 352.3663 | 6.0 | 426 | 735.6580 | 0.2610 | 0.9967 | |
|
| 414.3976 | 7.0 | 497 | 723.2065 | 0.2684 | 0.9968 | |
|
| 350.8201 | 8.0 | 568 | 714.0453 | 0.2788 | 0.9968 | |
|
| 364.5016 | 9.0 | 639 | 706.5261 | 0.2890 | 0.9968 | |
|
| 309.1184 | 10.0 | 710 | 700.7808 | 0.2933 | 0.9968 | |
|
| 288.5186 | 11.0 | 781 | 695.7027 | 0.3008 | 0.9968 | |
|
| 287.4452 | 12.0 | 852 | 691.5306 | 0.3037 | 0.9968 | |
|
| 280.9088 | 13.0 | 923 | 688.8063 | 0.3084 | 0.9969 | |
|
| 296.8389 | 14.0 | 994 | 686.1077 | 0.3132 | 0.9968 | |
|
| 265.1467 | 15.0 | 1065 | 683.7382 | 0.3167 | 0.9969 | |
|
| 268.5263 | 16.0 | 1136 | 682.1683 | 0.3206 | 0.9969 | |
|
| 309.7871 | 17.0 | 1207 | 681.1995 | 0.3199 | 0.9969 | |
|
| 307.6475 | 18.0 | 1278 | 680.1700 | 0.3230 | 0.9969 | |
|
| 262.0677 | 19.0 | 1349 | 679.2177 | 0.3270 | 0.9969 | |
|
| 275.3823 | 20.0 | 1420 | 678.9730 | 0.3294 | 0.9969 | |
|
| 273.984 | 21.0 | 1491 | 678.6031 | 0.3318 | 0.9969 | |
|
| 273.5361 | 22.0 | 1562 | 678.1285 | 0.3332 | 0.9969 | |
|
| 279.6474 | 23.0 | 1633 | 678.4264 | 0.3348 | 0.9969 | |
|
| 232.5045 | 24.0 | 1704 | 678.3773 | 0.3357 | 0.9969 | |
|
| 269.621 | 25.0 | 1775 | 678.4922 | 0.3372 | 0.9969 | |
|
| 289.8389 | 26.0 | 1846 | 679.0094 | 0.3397 | 0.9969 | |
|
| 256.7373 | 27.0 | 1917 | 679.5618 | 0.3407 | 0.9969 | |
|
| 262.3969 | 28.0 | 1988 | 680.1168 | 0.3414 | 0.9969 | |
|
| 266.2439 | 29.0 | 2059 | 681.0101 | 0.3421 | 0.9969 | |
|
| 247.7932 | 30.0 | 2130 | 681.9800 | 0.3422 | 0.9969 | |
|
| 246.8083 | 31.0 | 2201 | 682.8550 | 0.3416 | 0.9969 | |
|
| 270.827 | 32.0 | 2272 | 683.9250 | 0.3434 | 0.9969 | |
|
| 256.4384 | 33.0 | 2343 | 685.0451 | 0.3448 | 0.9969 | |
|
| 270.461 | 34.0 | 2414 | 686.2427 | 0.3439 | 0.9969 | |
|
| 253.8104 | 35.0 | 2485 | 687.4274 | 0.3441 | 0.9969 | |
|
| 265.532 | 36.0 | 2556 | 688.4856 | 0.3451 | 0.9969 | |
|
| 249.1426 | 37.0 | 2627 | 689.5027 | 0.3457 | 0.9969 | |
|
| 229.5651 | 38.0 | 2698 | 690.4455 | 0.3455 | 0.9969 | |
|
| 251.9008 | 39.0 | 2769 | 691.2324 | 0.3463 | 0.9969 | |
|
| 281.8228 | 40.0 | 2840 | 691.7993 | 0.3464 | 0.9969 | |
|
| 242.5272 | 41.0 | 2911 | 692.1788 | 0.3465 | 0.9969 | |
|
| 229.5605 | 42.0 | 2982 | 692.3799 | 0.3465 | 0.9969 | |
|
| 245.0876 | 43.0 | 3053 | 692.4745 | 0.3465 | 0.9969 | |
|
| 271.22 | 44.0 | 3124 | 692.5084 | 0.3465 | 0.9969 | |
|
| 244.3045 | 45.0 | 3195 | 692.5108 | 0.3465 | 0.9969 | |
|
| 243.9542 | 46.0 | 3266 | 692.5128 | 0.3465 | 0.9969 | |
|
| 274.6664 | 47.0 | 3337 | 692.5095 | 0.3465 | 0.9969 | |
|
| 231.1361 | 48.0 | 3408 | 692.5107 | 0.3465 | 0.9969 | |
|
| 274.5513 | 49.0 | 3479 | 692.5108 | 0.3465 | 0.9969 | |
|
| 316.0833 | 50.0 | 3550 | 692.5107 | 0.3465 | 0.9969 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |